THE RISE AND FALL OF TYPED SENTENCES

MARCEL CRABBE

Abstract

We characterize the 3-stratifiable theorems of NF as a 3 -stratifiable extension of $N F_{3}$: and show that $N F$ is equiconsistent with $T T$ plus raising type axioms for sentences asserting the existence of some predicate over an atomic Boolean algebra.

§1. Setting. $T T$ is the theory of types associated with $N F$. Quine's New Foundations. While $N F$ is a first order theory. $T T$ has its variables typed with the natural numbers and its logic modified accordingly. We recommend Thomas Forster's book [5] as the standard reference on these topics: and Randall Holmes's NF page math.idbsu.edu/~holmes/holmes/nf.html as the best Internet site. We warn the readers, if any, that the use of types in written language can become a bit messy: after all that's why typical ambiguity and $N F$ were invented! Fortunately people used to $T T$ often grasp things more easily by drawing pictures with horizontal lines and arrows than in writing.
$\mathcal{L}_{T T}$ is the language of $T T$ and $\mathcal{L}_{T T_{n}}$ is the language of $T T_{n}, \mathcal{L}_{T T}$ restricted to the first n types: $\{0,1, \ldots, n-1\}$. In general. if α is a set of formulas in $\mathcal{L}_{T T} . \alpha_{n}$ is the intersection of α and $\mathcal{L}_{T T_{n}}$.

We write \vdash for the derivability relation in $\mathcal{L}_{T T}$ or $\mathcal{L}_{N F}$ and \vdash_{n} for the derivability relation in $\mathcal{L}_{T T_{n}}$.

If α is a variable, a formula or a set of formulas. α^{+}is obtained from α by raising all the types by 1. α^{k} is $\alpha^{+++\cdots}$. where the + operation is iterated k times.

A formula is n-typed if all its types are among a sequence of n consecutive types. Thus every formula of $\alpha_{n}, \alpha_{n}^{+}, \alpha_{n}^{++} \ldots$ is n-typed.

When, after possibly renaming bound variables to avoid unintended identifications, we erase the types in a set of formulas or in a formula of $\mathcal{L}_{T T}$, we obtain a set of stratifiable formulas or a stratifiable formula of $\mathcal{L}_{N F}$. The result of erasing types in such a way from α is denoted by $\bar{\alpha}$.
§2. Boolean algebras and models of $T T_{3}$. It is quite natural to associate with an atomic Boolean algebra. $\langle B . \leq\rangle$, the 2-typed structure $\langle A, \leq . B\rangle$ by taking the collection A of atoms as type 0 . It happens that $\langle A . \leq, B\rangle$ is a model of $T T_{2}$. Conversely to any model of $T T_{2},\left\langle M_{0}, \in_{0}, M_{1}\right\rangle$. corresponds the atomic Boolean algebra $\left\langle M_{1}, \subseteq\right\rangle($ see $[7])$.

If $\langle B, U, \leq\rangle$ is an atomic Boolean algebra with a non-empty predicate U, one can associate with it the 3-typed structure $\langle U, \geq, A, \leq, B\rangle$, which is not in general a model of TT_{3}.

Conversely, we observe that any model of $T T_{3} .\left\langle M_{0}, \in_{0}, M_{1}, \in_{1}, M_{2}\right\rangle$, may be viewed as a model $\left\langle M_{1}, \epsilon_{1}, M_{2}\right\rangle$ of $T T_{2}$ (an "atomic Boolean algebra") with an extra level M_{0}. The elements of this M_{0} can be coded in M_{2} as "Leibniz substances"; the Leibniz substance of something being the set of all sets to which this something belongs. ${ }^{1}$ It results that $\left\langle M_{0}, \in_{0}, M_{1}, \in_{1}, M_{2}\right\rangle$ may be viewed as an atomic Boolean algebra with a non-empty predicate $\left\langle M_{2}, U, \subseteq\right\rangle$. where U is the collection of the codes $\left\{x \mid a \in_{0} x\right\}$ of the elements a of M_{0}.

Each sentence in the typed theory is therefore naturally translatable into a sentence in the theory of atomic algebra with a predicate and conversely.

Substituting typed structures for Boolean algebras, this justifies the following:
Definition 1. Let ϕ be a formula of $\mathcal{L}_{T T_{4}}$ and u a variable of type 3. Then $u^{3} \models \phi$ is taken to be the formula constructed as follows: we replace each quantifier $Q x^{0}$ by the restricted quantifier $\left(Q x^{2} \in u^{3}\right)$, the subformulas $x^{0} \in y^{1}$ and $x^{0}=y^{0}$ by $y^{1} \in x^{2}$ and $x^{2}=y^{2}$. and leave the others $\left(x^{i} \in y^{i+1}, x^{i}=y^{i}\right)$ as they stand. Of course, to prevent clash of variables. we have to suppose that variables like x^{0} and x^{2} must not both occur in ϕ. This can always be effected in case ϕ is a sentence by changing bound variables.

The formula $u^{3} \models \phi$ expresses that ϕ is true when we replace type 0 by u, and interpret the relation between u and type 1 as the converse of the former \in-relation. $u^{3} \models \phi$ is 3-typed with 1,2 and 3 .
$u^{3+k} \models \phi$ stands for $\left(u^{3} \vDash \phi\right)^{k}$, and since type 0 is not present in $u^{3} \vDash \phi$, there is a formula, denoted hereafter by $u^{2} \models \phi$, such that $\left(u^{2} \models \phi\right)^{+}$is $\left(u^{3} \models \phi\right)$.

Lemma 1. Let

$$
\mathcal{M}=\left\langle M_{0}, \epsilon_{0}, M_{1}, \epsilon_{1}, M_{2}\right\rangle
$$

be a model of $T T_{3}$ and U be non-empty and belonging to M_{2}. We extend \mathcal{M} downwards by adding U as a new level and by defining the relation between U (the new type 0) and M_{0} (the new type 1) as ${ }_{0} \ni$, the converse of \in_{0}. We thus obtain a 4-typed structure:

$$
\mathcal{M}_{\langle U, 2\rangle}=\left\langle U .{ }_{0} \ni, M_{0}, \in_{0}, M_{1}, \in_{1}, M_{2}\right\rangle .
$$

(1) If ϕ is a sentence in $\mathcal{L}_{T T_{+}}$, then, assigning U to the variable $u^{2}, \mathcal{M}_{\langle U 2\rangle} \vDash \phi$ iff $\mathcal{M} \vDash\left(u^{2} \models \phi\right)$.
(2) If A is a closed axiom of comprehension in $\mathcal{L}_{T T_{4}}$ of the kind $\exists y^{3} \forall x^{2}\left(x^{2} \in y^{3} \leftrightarrow\right.$ $\phi)\left(y\right.$ of the fourth type). then $\mathcal{M}_{\langle U 2\rangle} \vDash A$.
Proof. (1) is almost trivial as $\mathcal{M}_{\left\langle L_{2}\right\rangle} \models \phi$ is simply another way of saying that $\mathcal{M}_{\langle U, 2\rangle} \models\left(u^{3} \vDash \phi\right)$. which is equivalent to $\mathcal{M} \models\left(u^{2} \models \phi\right)$.

[^0](2) $u^{3} \vDash \exists y^{3} \forall x^{2}\left(x^{2} \in y^{3} \leftrightarrow \phi\right)$ is $\exists y^{3} \forall x^{2}\left(x^{2} \in y^{3} \leftrightarrow u^{3} \models \phi\right)$. Hence $\forall u^{3} u^{3} \models A$ is provable in $T T_{3}^{+}$. Therefore $u^{2} \vDash A$ is true in \mathcal{M} when U is assigned to u^{2}. and A is true in $\mathcal{M}_{\langle\langle, 2\rangle}$ by (1).

Lemma 2. $T T_{4} \vdash_{4}\left(\phi \rightarrow \exists u^{3} u^{3} \models \phi\right)$. for any sentence ϕ in $\mathcal{L}_{T T_{4}} . N F \vdash(\bar{\phi} \rightarrow$ $\exists u^{3} u^{3}=\phi$), for any sentence in $\mathcal{L}_{T T_{+}}$.

Proof. Let $\lambda\left(x^{0}\right)$ be the term $\left\{v^{1} \mid x^{0} \in v^{1}\right\}$. the Leibniz substance of x^{0} : and let U be $\left\{\lambda\left(x^{0}\right) \mid x^{0}=x^{0}\right\}$.

Then, for any formula ϕ in $\mathcal{L}_{T T_{+}+}$it can be shown. by induction on the length of ϕ. that $T T_{4} \vdash\left(\phi \leftrightarrow(U \models \phi)\left[\vec{x}^{2}:=\overline{\hat{\lambda}\left(x^{0}\right)}\right]\right)$. where the λ operation is applied to each variable in the list \vec{x}^{0} of variables of type 0 that occur free in ϕ. This is essentially because $T T_{4} \vdash x^{0} \in y^{1} \leftrightarrow y^{\prime} \in \lambda\left(x^{0}\right)$ and $T T_{4} \vdash x^{0}=y^{0} \leftrightarrow \lambda\left(x^{0}\right)=\hat{\lambda}\left(y^{0}\right)$.

The proof for $N F$ is similar.
§3. Ambiguity reduced. Amb is the collection of ambiguity axioms: the sentences $\phi \leftrightarrow \phi^{\prime}$.

It is known that $\mathbf{A m b}_{3}$. i.e., ambiguity for 2-typed sentences. is true in every model of $T T$ which is externally infinite (see [2] and [7]). Moreover it is a consequence of Grishin's reduction of $T T$ to $T T_{4}$ ([6] is one of the original Russian references: see also [1] and [3]) and Specker's connection between $N F$ and $T T+\mathbf{A m b}$ (see [8]) that $T T+\mathbf{A m b}_{4}$ is equiconsistent with $T T+\mathbf{A m b}$ and with $N F$.

Call a sentence $\exists x \phi$ a \sum-sentence when it is 3-typed and x is its unique variable of highest type. Whenever ϕ is a sentence in $\mathcal{L}_{T T_{3}}, \exists u^{2} u^{2} \models \phi, \exists u^{3} u^{3} \vDash \phi, \exists u^{4} u^{4} \models \phi$. \ldots are all Σ-sentences.

Now we introduce another kind of ambiguity axioms that look just a little stronger than $\mathbf{A m b}_{3}$ but much weaker than $\mathbf{A m b}_{4}$.
Σ Amb is the set of sentences of the form $\exists x \phi \rightarrow \exists x^{\dagger} \phi^{\dagger}$. for Σ-sentences $\exists x \phi$.
The schema $\mathbf{\Sigma A m b}$ expresses in particular the fact that if there is a predicate U over an atomic algebra constituted by 2 consecutive types, $k, k+1$, verifying a property expressible by a formula of the language of Boolean algebras with a predicate. then there is a predicate V over the algebra constituted by the two next types. $k+1 . k+2$. satisfying the same property. ${ }^{2}$
^Amb is the set of sentences of the form $\phi \rightarrow \exists u^{2} u^{2} \models \phi, \phi$ in $\mathcal{L}_{T T_{;}}$. These sentences of $\mathcal{L}_{T T}$, mean that every model verifying ϕ can be extended downwards to a structure satisfying ϕ again by adding a level below level 0 .

Theorem. Let χ be a sentence in $\mathcal{L}_{T T_{3}}$.
(1) $N F \vdash \bar{\chi}$ iff $N F_{3}+\overline{\mathbf{A} \mathbf{A m b}} \vdash \bar{\chi}$:
(2) iff for some $k . T T+\mathbf{\Sigma A m b} \vdash W_{0 \leq i \leq k} \chi^{i}$.

[^1]Proof. (a) If $N F \vdash \bar{\chi}$, then $T T_{3}+T T_{3}^{+}+A+\mathbf{A m b}_{4} \vdash_{4} \chi$. where A is a specific closed axiom of comprehension ${ }^{3}$ in $\mathcal{L}_{T / 4}$ of the kind $\exists y^{3} \forall x^{2}\left(x^{2} \in y^{3} \leftrightarrow \phi\right)$. This combines the results of Specker and Grishin. mentioned above.
(b) If $T T_{3}+T T_{3}^{+}+A+\mathbf{A m b}_{4} \vdash_{4} \chi$. then $T T_{3}+\boldsymbol{\Lambda} \mathbf{A m b} \vdash_{3} \chi$.

Let $\mathcal{M}=\left\langle M_{0}, \epsilon_{0}, M_{1}, \epsilon_{1}, M_{2}\right\rangle$ be a model of $T T_{3}+\boldsymbol{\Lambda} \mathbf{A m b}+\neg \chi$. If $\phi_{1} \ldots \phi_{n}$ are sentences in $\mathcal{L}_{T T_{3}}$, there is a conjunction $\Psi \equiv(\neg) \phi_{1} \wedge \cdots \wedge(\neg) \phi_{n}$ of these sentences optionally negated that is true in \mathcal{M}. By $\Lambda \mathbf{A m b}$. $\mathcal{M} \vDash\left(\Psi \wedge \exists u^{2} u^{2} \models \Psi\right)$. Let $U \in M_{2}$ be a witness for $\exists u^{2} u^{2} \models \Psi$ - we certainly may assume U non-empty because we may include $\exists x^{0} x^{0}=x^{0}$ among the ϕ_{i}.

By Lemma 1. $\mathcal{M}_{\left\langle U_{2}\right\rangle} \models \Psi \wedge \Psi \wedge A$.
Therefore.

$$
\mathcal{M}_{\langle\langle 2\rangle} \vDash T T_{3}^{+}+A+\underset{1 \leq i \leq n}{ } \bigwedge_{i}\left(\phi_{i} \leftrightarrow \phi_{i}^{+}\right)+\neg \chi^{\dagger} .
$$

Compactness produces a model of $T T_{3}+A+\mathbf{A m b}_{4}+\neg \chi^{1}$. which of course is also a model of $T T_{3}+T T_{3}+A+\mathbf{A m b}_{4}+\neg \chi$.
(c) If $T T_{3}+\boldsymbol{\Lambda A m b} \vdash_{3} \chi$. then. for some k. $T T+\boldsymbol{\Sigma A m b} \vdash \bigvee_{0 \leq i \leq k} \chi^{i}$.

Let's start with a model \mathcal{M} of $T T+\mathbf{\Sigma A m b}$ verifying $\neg \chi \cdot \neg \chi^{\dagger} \cdot \neg \chi^{\dagger}{ }^{\dagger} \ldots$
Let $\phi_{1} \ldots \phi_{n}$ be sentences in $\mathcal{L}_{T T}$. There are some $p . q$. such that $q<p$ and $\mathcal{M} \models \phi_{i}^{4} \leftrightarrow \phi_{i}^{\prime \prime}$ for $1 \leq i \leq n$.

We know. by Lemma 2. that

$$
\left\langle M_{q} \cdot \epsilon_{\psi}, M_{q+1}, \epsilon_{q \mid 1}, M_{q \mid 2}, \epsilon_{\psi \mid 2}, M_{q+3}\right\rangle \vDash\left(\phi_{i} \rightarrow \exists u^{3} u^{3} \vDash \phi_{i}\right) .
$$

Hence $\mathcal{M} \vDash\left(\phi_{i}^{q} \rightarrow \exists u^{q^{+3}} u^{q^{+3}} \models \phi_{i}\right)$. From this and $\boldsymbol{\Sigma A m b}$. $\mathcal{M} \vDash=\left(\phi_{i}^{q} \rightarrow\right.$ $\exists u^{p+2} u^{p+2} \models \phi_{i}$) because $\exists u^{2} u^{2} \models \phi_{i}$ is a Σ-sentence. Hence $\left(\phi_{i}^{p} \rightarrow \exists u^{p+2} u^{p+2} \models\right.$ $\left.\phi_{i}\right)$ is true in \mathcal{M}.

Therefore.

$$
\left\langle M_{p}, \in_{p}, M_{p+1}, \in_{p+1}, M_{p+2}\right\rangle \models T T_{3}+\neg \chi+\bigwedge_{1 \leq i \leq n}\left(\phi_{i} \rightarrow \exists u^{2} u^{2} \models \phi_{i}\right) .
$$

Compactness gives us a model of $T T_{3}+\neg \chi+\boldsymbol{\Lambda A m b}$.
(a). (b) and (c), dispose of the "if" part of 2. The "only if" part is clear since erasing the types in a derivation in $T T+\Sigma \mathbf{A m b}$ we obtain a derivation in $N F$ because $\overline{\mathbf{\Sigma A m b}}$ is tautologous.
(d) If $T T_{3}+\mathbf{\Lambda} \mathbf{A m b} \vdash_{3} \chi$, then $N F_{3}+\overline{\mathbf{\Lambda} \mathbf{A m b}} \vdash \bar{\chi}$. Again, this is proved by erasing types.

So the "if" part of 1 is completed by (a). (b) and (d).
(e) If $N F_{3}+\overline{\mathbf{A} \mathbf{A b b}} \vdash \bar{\chi}$. then $N F \vdash \bar{\chi}$. Because $N F \vdash \overline{\mathbf{\Lambda A m b}}$ by Lemma 2 .

Corollary. The theories $N F . N F_{3}+\boldsymbol{\Lambda} \mathbf{A m b}$ and $T T+\boldsymbol{\Sigma A m b}$ are equiconsistent.
Comments. (1) The first part of the theorem is a description of the 3-stratifiable theorems of $N F$ as a 3-stratifiable extension of $N F_{3}$. The 1 -stratifiable part (the theory of equality on an infinite domain). 2 -stratifiable part and n-stratifiable part

[^2]($n>3$) of $N F$ are respectively identical with the 1,2 -stratifiable part and n stratifiable part of $N F_{1}, N F_{2}$ (provided $N F$ is consistent!) and $N F_{n}$, which is $N F$ itself. On the other hand, it is known that the 3 -stratifiable part of $N F$ is not the 3-stratifiable part of $N F_{3}$ ([2] and [1]. [4]).
(2) We have been concerned so far with type raising. Let us now consider the converse of $\boldsymbol{\Sigma} \mathbf{A m b} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{A m b}$, i.e., $\phi^{+} \rightarrow \phi$, for $\boldsymbol{\Sigma}$-sentences ϕ. It is easy to derive from the above what is, in our opinion, a less interesting result, namely that $N F \vdash \bar{\chi}$ iff $T T_{4}+\boldsymbol{\Sigma} \overleftarrow{\mathbf{A m b}}_{4} \vdash_{4} \chi$, for 3-typed χ.

This is simply because in $T T_{4}+\boldsymbol{\Sigma} \overleftarrow{\mathbf{A m b}}$. one proves $\mathbf{\Lambda A m b}$ by using the $T T_{4}$-case of Lemma 2.

REFERENCES

[1] M. Boffa, A reduction of the theory of types, Set theory and hierarchy theory, Springer Lecture Notes in Mathematics. vol. 619. 1977. pp. 95-100.
[2] M. Boffa and M. Crabbé, Les théorèmes 3-stratifiés de NF3, Comptes rendus de l'Académiée des Sciences de Paris, série A. vol. 280 (1975), pp. 1657-1658.
[3] M. Crabbé. La prédicativité dans les théories élémentaires, Logique et Analyse, vol. 35 (1976), pp. 255-266.
[4] -. On the reduction of type theory, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 29 (1983), pp. 235-237.
[5] Th. Forster. Set theory with a universal set. Exploring an untyped universe. second ed.. Oxford Logic Guides. no. 31, Clarendon Press. Oxford. 1995.
[6] V. N. Grishin. The method of stratification in set theory. Ph. D. thesis. Moscow University, 1972, in Russian.
[7] U. Oswald. Fragmente von "New' Foundations" und Typentheorie. Ph. D. thesis, ETH. Zürich. 1976.
[8] E. Specker. Typical ambiguity. Logic, methodology and the philosophy of science (E. Nagel. P. Suppes, and A. Tarski, editors). Stanford University Press. Stanford. 1962, pp. 116-124.

UNIVERSITE CATHOLIQUEDE LOUVAIN DÉPARTEMENT DE PHILOSOPHIE

PLACE MERCIER. 14
B-1348 LOUVAIN-LA-NEUVE. BELGIUM
E-mail: crabbe@risp.ucl.ac.be

[^0]: ${ }^{1}$ Leibniz repeatedly suggests that a substance can be associated with the collection of predicates attributed to it. Thus he writes in Discourse of Metaphysics $\$ 8$: "... la nature d'une substance individuelle ou d'un estre complet est d'avoir une notion si accomplie qu'elle soit suffisante à comprendre et à en faire deduire tous les predicats du sujet à qui cette notion est attribuée.": "... the nature of an individual substance or of a complete being is to have a notion so complete that it is sufficient to comprehend and to allow the deduction of all the predicates of the subject to which that notion is attributed." Forster [5] comments on the role of this important notion and refers to Boffa. Quine and Whitehead.

[^1]: ${ }^{2}$ Let's remark that the collection of all type raising axioms. $\phi \rightarrow \phi$. generates trivially the usual scheme of ambiguity Amb because the collection of sentences is closed under negation. This is not the case for the collection of Σ-sentences. $\Sigma A m b$ is made up of true unidirectional raising axioms.

[^2]: ${ }^{3}$ [6] uses the axiom stating the existence of the set of sets with non-empty intersection: [3] uses the existence of the set of Leibniz substances (the proof is essentially that of Lemma 2); [1] introduces still another A.

