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STRATIFICATION AND CUT-ELIMINATION

MARCEL CRABBf

Introduction. In this paper, we show the normalization of proofs of NF (Quine's

l,{ew Foundations:see [15])rninus extensionality. This system, called SF (Stratff ied

Foundatiorrs) differs in many respects from the associated system of simple type

theory.r It is written in a first order language and not in a multi-sorted one, and the

formulas need not be stratif iable, except in the instances of the comprehension

scheme. There is a universal set, but, for a similar reason as in type theory, the

paradoxical sets cannot be formed.
It is not immediately apparent, however, that SF is essentially richer than type

theory. But it follows from Specker's celebrated result (see [6] and [4]) that the

stratif iable formula (extensionality -- the uniuerse is not u*ell-orderable) is a theo-

rem of SF.
I t  is  known (see t11])  that  th is set  theory is consistent,  though the consistency of

NF is sti l l  an open problem.2
The connections between consistency and cut-elimination are rather loose. Cut-

elimination generally implies consistency. But the converse is not true. In the case of

set theory, for example,ZF-hke systems, though consistent, cannot be freed of cuts

because the separation axioms allow the formation of sets from unstratif iable

formulas. There are nevertheless interesting partial results obtained when re-

strictions are imposed on the removable cuts (see [1] and [9]). The systems with

stratif iable comprehension are the only known set-theoretic systems that enjoy full

cut-elimination.
Since cut-elimination for stratif ied set theory trivially implies cut-elimination for

type theory, one justly expects that we wil l extend Girard's method (see [7], [8],

U2f, [14] ,  and [19]) ,  which mirrors in proof theory the construct ion,  by i terat ion of

the power set operation, of a natural model of type theory. The extension we give

Received August 3, 1989; revised February 5, 1990.
t The types of this associated system are the natural numbers, e is its sole relation, and the only

nonlogical axioms are the axioms of comprehension.
2Actual ly Jensen's resul t  ( in [11])seems to show more. The system proved consistent is NFU, i .e.  NF

with Urelements. ln this system, the only nonextensional objects are the atoms, i.e. the empty sets.
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exploits proof-theoretically the technique used by Jensen (in tl l l) for the
construction of co-models of SF.3

Girard's proof of the cut-elimination theorem for type theory requires the exis-
tence of an ro-model of type theory. This seems unavoidable, since the normal-
rzatton of type theory is much stronger than the consistency of type theory,a which
is elementarily provable. The normalization of intuit ionistic type theory-without
extensionality-elementarily implies the consistency of classical extensional higher
order arithmetic.s In the case of NF, the situation is a l itt le bit different. The
normalization of the nonextensional intuit ionistic system implies of course the
consistency of the system; and, because Godel's negative interpretation works in
this case, this in turn implies the consistency of the classical nonextensional system.
However, contrary to what happens in type theory, it is not known how to
extensionalize models of the nonextensional fragment of NF without destroying
comprehension axioms.

The proof that we preserrt here below does not require more than the existence of
an o-model of NFU (see footnote 2). In fact, the result can be established in NFU
plus Rosser's axiom. But since we do not suppose that the reader is acquainted with
the NF literature, we wil l not follow this path here. We will instead carry out the
proof directly in ZF.

$1. Naive set theory. As everybody knows, naive set theory is inconsistent.
Nevertheless, we wil l recall the language and the natural deduction rules for this
system essentially because its proof theory is not trivial and because every set theory
worth studying must seemingly be a part of a system of this kind. The material of
this section is therefore usable for the study of consistent fragments.

l. l . Terms and formulas. Well-formed expressions are built up from a denumer-
ably infinite sequence of variables and the symbols --, V, e, { | }, (, and ).

The notions of term and formula are defined as follows:
A variable is a term.
I f  Pand Qare terms,thenPe Qisaformula.
lf A and B are formulas and if r is a variable, then (,4 -- 'B) andYxA are formulas

(the occurrences of r in YxA are bound).
I f  ,4 is a formula and,x a var iable,  then { t l4}  is  a term (cal led abstract ;  the

occurrences of  . r  in { . r  l , l l  are bound).

- 'Jensen's idea is,  fo l lowing Specker 's suggest ion ( in [17]) ,  to construct  a model of  type theory wi th a
shifting automorphism sending objects of a given type to the next one (the types are the natural numbers).
He achieves this by showing how to make the types indiscernible-thereby loosing extensional i ty.  The
main tool used for that is Ramsey's theorem. This is sufficient for the proof of the consistency of the
system. The method generalizes, however, and enables one to construct an rr;-model as well. But in this
case Ramsey's theorem is not strong enough, and an exploi tat ion ol  the Erdr is-Rado theorem is
necessary.

aSee footnote 1.
sThis can be seen by first aclding the axioms of arithmetic without induction, then performing a

negat ive interpretat ion of  the c lassical  system (which works pret ty wel l  when extensional i ty is not
present), and, finally, making an extensional interpretation.
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A sentence lclosed termf is a formula fterm] having no free occurrences of

variables.
1.2. Deriuations and cut elimination. We now proceed to the formulation of the

natural deduction rules for naive set theory. These rules are according to the gist of

natural deduction not relations between formulas but procedures to construct

derivations, i.e. formal proofs. Derivations wil l be coded in an extended typed l"-

calculus along the l ine of  an idea of  Curry (see [5.9E])revis i ted by Howard in [10] .
We now present the language for the formulation of the derivations.

For each formula .4, there is a denumerably infinite sequence of assumptions,

called assumptions oJ' A.To be formal about it we identify the ith assumption of A

with the ordered pair (i,,a). The same letters wil l be used for assumptions and

variables (we hope that no confusion wil l arise). Though we wil l use the ordinary

mode of speech concerning the bound and free occurrences, we wil l tacit ly suppose

that this problem is solved by using a method like that of Bourbaki in [2, Chapter 1,
gll or de Bruijn in [6]-the net result being that expressions differing only with

regard to bound variables are identif ied.
We define the notions of deriuation of a formula (its conclusion) and of free and

bound occurrences of an assumption or of a variable in a derivation simultaneously:

An assumption x of Ais a derivation of ,4 in which x is the sole (free)occurrence of

an assumption; the free occurrences of variables in x are those in A.

Introduction of --+. If f is a derivation of conclusion B and x is an assumption of

.4, then AxZ is a derivation of (A 
- 

B); the occurrences of x in ixZ are bound, and

the other ones (of assumptions or of variables) remain bound or free as they are in A

and f.
Elimination of --+. If f is a derivation of the conclusion (A -- B) and II a

derivation of A, then (fII) is a derivation of B; an occurrence is free or bound in

Qn\ iff i t is so in Z or II.
Introduction of V. If t is a derivation of the conclusion ,4 and x is a variable not

occurring free in a free occurrence of an assumption in f, then Vxf is a derivation of

YxA:the occurrences of x are bound in Vxf, the other ones (of assumptions or of

variables) remain bound or free as they are in f.
Elimination of Y.If f is a derivation of the conclusion Vx,4 and P is a term, then

(IP) is a derivation of the conclusion Alx:: P]; the occurrences remain free or

bound as they are in Z or P. (Alx:: Pf is the result of the substitution of P for x at

the free occurrences of x rn A, up to a renaming of bound variables if necessary.)

Introduct ion of  { l  } .  I f  t  is  a der ivat ion of  Alx: :  Pl ,  then ( lP e {* l  A})r  is  a

derivation of Pe {xl, l}; the free and bound occurrences of assumptions in

(tP e {*l e})f are the same as in f ; the free and bound occurrences of variables in

( tP e { t l  A}) f  are the same as in r  or  P e t r  I  a } .  W. wi l l  abbreviate (1P e {"  I  a } t l
as f f

El iminat ion of  {  |  } .  I f  f  is  a der ivat ion of  the conclusion P e {* l  A},  then ( IJ) is

a derivation of Alx:: P]; free and bound occurrences in (^E J) are the same as in f.

A closed derivation is a derivation without free (occurrences of ) assumptions. ,4 is

a theorem of (a fragment of) naive set theory if there is a closed derivation of ,4.

For the sake of readabil ity, we wil l use the current conventions on parentheses:

omitting them when they are necessary, adding them " when not necessary;
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part icular ly,  when parentheses are missing in expressions of  the form TrT. . .  4,  we
associate to the lef t :  ( .  (TrTr)  . .7^).

If f and II are derivations, and ,x is an assumption of the same formula as the
conclusion of I/, then f [-x :: [I) is the derivation resulting from the substitution in
f of I l at the free occurrences of .x-possibly up to a renaming of bound
assumptions.

I f  f  is  a der ivat ion,  P is a term and x is a var iable,  then f [x: :  P]  is  the der iva-
tion resulting from the substitution in f of P at the free occurrences of r. For-
mally f [.x:: P] is defined by induction on f, starting frorn the init ial clause:
(i, ,4 )[,x :: P] : (i, A [r :: P] 1.

1.3. Cut eliminatictn. We are now in a position to formulate the
cur-EltnrNArroN Rur-ns. a) Q,xz)il immediatelT,reduces to zlx:: [r l.
b) (V-xt)P immediately reduc'es to Zlx:: P].
c)  (1))J immediately,redut 'es to Z.
A c'ut in a derivation is an occurrence in the derivation of a derivation of one of

the forms indicated at the left in the cut-elimination rules, i.e, (ixl)i l , (V.xf)P or
(tt)J. A derivation is normal if i t contains no cuts. A derivation f reduces in one step
to II iff 11 is obtained by removing a cut in f as prescribed by the cut-elimination
rules. A reduction sequence is a sequence of derivations Eo, Zr,. . . such that f,
reduces in one step to Z,*r ,  i f  t ,+,  is  in the sequence. f  reduces to I I  1f  there is a
reduction sequence starting with f and ending in 17. A derivation f is strongly
rutrmalizable iff each reduction sequence starting with f is f inite.

Clearly, a strongly normalizable derivation reduces to a normal one.
Reunnr. It is well known that the inconsistency of naive set theory is a con-

sequence of Russell 's paradox. In the present context, it is formulated as follows.
LeI A be any formula and consider the abstract  Ro {z l ( r ,  t  - -  Al t .Let  r  be
an assumption of R, € R;; then ir(xJ.x)(f 2r(rJx)) is a closed derivation of A.
However, this derivation does not reduce to a normal one. More generally, it is
elementarily provable that there is no normal closed derivation of VxVy'x e y
(one cannot cut-freely prove an absurdity). Therefore the collection of cut-free
provable theorems of naive set theory is a natural paraconsistent set theory (see
[3,  pp.94-95]) .

$2. Stratif ied set theory. Roughly speaking, a stratif iable formula is a formula
that one gets when one erases the types in a formula of type theory.

Dsrtxtrlclxs. A weak stratif ication assignment for a formula C is a function from
the occurrences of terms in the formula to the integers satisfying the following
requirements:

At an occurrence of the formula P e Q in C, the value of Q is i i ff the value of P
is i  -  1.

At an occurrence of  the term . [ r  
l ,a;  in c,  each occurrence of  r  in {x 1,4} has the

same value i  and rhe value of  l .x  I  a )  is  i  + l .
At an occurrence of the formula Vr,4 in C, each occurrence of x has the same

value.
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A strutif icationassignment for C is a weak stratif ication assignment such that, for

every variable .x, all occurrences of .x in C have the same value.

Similarly, a v,euk stati.f ication lstrutif ication) assignment for an abstract I x I a ] is

a weak stratif ication [stratif ication] assignmentfor A such that each occurrence of r

has the same value.
A formula or term is weakll '  stratif iable lsftatifablef if there is a weak

stratif ication [stratif ication] assignment for it '

For example.  Russel l 's  terms ( ,z l (z € z -+ A) l  are not weakly strat i f iable,  but  the

formula ( :  e :  - -  A\  is  weakly strat i f iable-though not strat i f iable- i f  ,4 is weakly

stratif iable.
Clear iy.  a sentence or c losed term is strat i f rable i f f  i t  is  weakly strat i f iable.

The ststem SF. SF (strat i f ied toundat ions) is the f ragment of  naive set theory that

results from the restriction that the abstracts have to be weakly stratif iable.

Rrunnxs. 1.  I t  is  qui te rout ine to show that the theorems of  SF are exact ly the

formulas provable in nonextensional  intui t ionist ic NF (wi th abstracts)  wi thout r .

n.  v and l .  We could have acided mors logical  constants and, 'or  the c lassical

double negat ion rule and appended the appropr iate cut-el iminat ion rules '  Every-

thing wor-r ld then have worked out rather wel l .  but  the matter would have become

much more involved without adding anythin-u ncw to what happens in other systems

(see [9]  for  a detai led presentat ion).

2. In prder that the derivations behave nicely through reduction, which supposes

that the abstracts are closed under substitution, we have formulated the system with

the concept of weak stratif ication instead of that of stratif ication. If we had used

only stratif iable terms, we would not have lost any theorem, but then f [r:: P]

would not necessarily be a derivation if (Vrf )P is a derivation, and some theorems

would not be cut-free provable for the trivial reason that the cut-elimination rules

would be undefined for some cuts (more on this point in [3]).

$3. Main theorem. This section is devoted to the proof of a theorem which may

be seen as an abstract reformulation of the Gentzen-Prawitz Hauptsatz in the l ine of

Tai t  [18]  and Girard [7] .
DpnrxrrroN. A sorf ed structure ,l ' '  is a set N with a function sorr sending the

elements of N onto the terms of SF, and with, for each derivation f, a relation €:, on

N such that,  i f  0 err ,  then f  is  a der ivat ion of  sort(p) e sort(e).n

We call P the sort of s if sort(s) : P.

DEnrNrrroN. Auctluarion is a function whose domain is a finite set of variables. If u

and L,' are valuations agreeing on all the variables (other than r)for which both are

defincd and if r '  is defined for ,x, thcn we write l '  (" f ' .

A valuation is deftnetl for a formula [term] iff i t is defined for every variable

occurring free in the formula [term]. f

If ". f is a sorted structure and u is a valuation define dfor A and taking values in tV,

we wil l denote by A[u] the formula resulting from .4 through the simultaneous

substitution for each free variable x rn A of the term sort(r(r)). P[u] is defined

analogously.

211

6 
[] e , a intuitively means that f belongs to r for the reason f .
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DppIxtrloN. A normalization structure is a sorted structure -( equipped with an
operator [, ], such that for each term P and valuation u defined for p and taking
values in lf, [f, r] belongs to N and is of sort pluf. I

Let -{ be a normahzation structure. If u is a valuation into l{ defined for C and
if ) is a derivation of Clu), we define inductively the relation 2,,l lC as follows:7

Z, u ll P e Q itr [e u] e, [e,rl.
2, u ll (A 

- 
B) itr, for every 11 such that II , u ll A, e n), u ll B.

z, ullYxA iff for every valuation u'such that u'(x) belongs to N and u1,D,,
f sort(u'(x)), u' l l  A.

In order to be able to state the theorem below, we have to introduce some further
definitions concerning the normalization structures.

3.1. Comprehensiueness. The normalization structure ,f is comprehensiue itr (a)
the comprehension axiom holds in the sense that

a e, [{x I.q}, , l  i tr z !, u, l l  A ( for  u I ,D'and u'(x)  :  d) ,

and (b) [P[" , :  Q],  u l  :  [p,u ' ] ,  i f  L;1, t ) ,and u,(x)  :  [e,ul .
Sussrlrurrox Lruud,. If ,f is comprehensiue, then:
l. Z, u ll A[x:: a] ttr Z, u' ll A (tf n 1,t), and u,(x) : [e,,un);
2. f Z, u llYxA and u is defined fo, e, then E(eluf), u F e7*',:: g,.
3. Z,ul fe.  { r l  A} i f f  EI ,uf  Alx: :  ef .
The inductive proof of 1 is straightforward. The two other parts follow from the

first.
3.2. stability. we introduce first the notion of *itical reduction.
(a) QxZ)nT, \ critically reduces to f [x:: II)7, \, provided Z is a

strongly normalizable derivation. 8

(b) (Vx))  PTr. .  . \  cr i t ical ly reduces to ) [x: :  p]  T,  . . \ .
(c)  ( l t )J T1.. . \  u i t ical ly reduces to ZTr. . .T^.
In the possibly empty sequence Tt .\,the {'s are either derivations, or terms, or

the symbol J.
DErrxtrtox. The normalization structure ,f is stable iff the following condition

holds: if u e , p and f crit ically reduces to II,then a e, B.
SrnstLItv Lptv{I'tl. If ..f is stable, then if II, u ll C in'a Z critically red,uces to II,

then E, u Il C.
Pnoor (Induction on C). The starting case, when C is p e e, is nothing more than

a reformulation of the hypothesis.
Suppose that Ir, u Il@ -- B) and that ) critically reduces

II@, u 11-8. By the induction hypothesis, Z@, u ll_B because
to II @.

to II.If @, u l l A, then
Z@ critically reduces

Suppose that r cr i t ical ly reduces to Ir,  and that Ir ,  uFyxA.If  u(,u,,  then
rsort(u'(x)) critically reduces to rlsort(u'(x)) and rlsort(u'(x)), u, llA. By the in-
duction hypothesis fsort(u'(x)), u, Il A.

'8 , ,  I  c may be read: "r  forces C, relat ive to r l "  or . . r  is  a val id proof of  c,  modulo u, , .EThe necessity of this restriction will become apparent in $$4 and 5 (see, for example, footnote l0).
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3.3. Soundness.
DEnrNrrrox. An analytic derivation is a derivation of the form xTr"'[, where

x is an assumption and the [ 's are either derivations, terms or the symbol J. A

strongly analytic deriuationis a strongly normalizable analytic derivation. n

In particular, every assumption is strongly analytic'

DnnmrrroN. The normalization structure t is sound iff the following two

conditions hold:
(a) If a €t 0, then ) is strongly normalizable'

(b) If f is strongly analytic' then u ez fr '
SouxpxESS LEMMA . If J' is sound, then

l. if t, u l l  C, then E is strongly normalizable, and

2. if Z is a strongly analytic deriuation of Clu), then E, u l l C'

Pnoon. The tvro parts are proved conjointly by induction on C. Suppose that f,

t) l l(A -- B). By the second induction hypothesis, Zx, u lf B if x is an assumption of

,ori,a[u]. It iollows by the first induction hypothesis that fx is strongly nor-

malizable, whence so is f.

Let E be a strongly analytic derivation of (A 
- 

B)[u]. Then, by the first induction

hypothesis, if 11, ,(e,then 17 is a strongly normalizable derivation of ,4[u]. It

follows that zII is strongly analytic. Therefore, by the second induction hypoth-

esis, f l/, u ff- B.
I f  t ,  u l lYxA, then rsort(u ' (x)) ,  L) ' l lA ( i f  u( ,u 'and u'(x)  in l { ) .By the f i rst

induction hypothesis, fsort(u'(x)) is strongly normalizable, and so is f '

Let Z be a strongly analytic derivation of YxAluf. Then, for every term P, fP is

strongly analytic too. Hence, by the second induction hypothesis, EP, rs' [ '4 for

.u.ry-r t  such that L,  ( , l "  and u'(x)  is  of  sort  P'  n

Dprrxrrrox. A normalization model is a comprehensive, stable and sound

normalizationstructure. I

Let 't be a normalization structure.If u is a valuation into l{, f [u] wil l denote the

derivation resulting from the simultaneous replacement of each free variable x of f,

for which u is defined, by sort(u(x)).
If s is a function such that for every assumption x (for which s is defined), s(x) is

a derivation of the same conclusion as x, then r[s] is the derivation resulting from

the simultaneous substitution of s(x) for each free assumption x in f for which s is

defined.
TseonBu . If ,f is a normalization model and Z is a deriuation of C, then f [u] [s]'

n l lC foreachu(def inedJbrC)andssuchthats(x[u]) ,  u l lA( i f  x isanassumptionof A

and s is defined for the assumption x [u] ) '
Pnoor (Induction on the construction of t). If f is an assumption, f [u] [s], u l]- C

by hypothesis or the soundness lemma, according to whether s is defined or not for

t [u] .
Introduction of --r. 2 is 2xI1 and C is (,4 -- B). Let @, u 11.4. we want to prove that

Qxn)fuf [s]@, , rn.  By the soundness lemma, @ is strongly normal izable.  I t  is

therefore sufficient, due to the stability lemma, to show that I/[u] [s'], u lf- B' where s'

is l ike s with the possible exception that s'(x[u]): @. The result follows from the

induction hypothesis.

219
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El iminut ion of '  - - .  Z is [ I@,I1 is of  (A- C) and @ is of  A.By the induct ion
hypothesis, n[u][r], r,, li-(.4 - C) and @irl[r],, f Z *frlr.. Zirf frl,ullC.

Introduction of V. t is VxII and C is VxA. We have to show that
(vr [ ) [u] [s]sort(u ' ( .x)) ,  u '1yA, i f  L,  1. ,D'and u'(x)  belongs to l { .  But as x is not
free in a free assumption of I/, (VxII)[u] [s]sort(r."(x))crit i-ally reduces to I/[u,] [s].
The result then follows from the stabil ity lemma and the induction frypotfi i i .

El iminat ion oJ'Y. Z is I IP, I I  is  of  YxA and C is A[x: :  p] .By the induct ion
hypothesis,  11[u] [s] ,  i '  lJ-vx,4,  whence r [u] [s] ,  t )FA[" , :  p] ,  by ihe subst i tut ion
lemma.

Introduct ion ol  t , l  
) .  ;  is  f ip e l " l  A, I )17 and c is p e {"  1 ,a } .  we wish ro show

that f I1[u] [s] ,  r . '  l l -P e { t l  Al .By the subst i tut ion lemma, i t  suf f ices to show that
f [ [u] [s]J,  , l lAlx: :  Pl .  By the stabi l i ty  lemma i t  is  suf f ic ient  to have thar
IIftf[s], r; F.a [.x:: P], which is the induction hypothesis.

El iminat ionof t \  |  i  : is t IJ,  I I  of  p.  
t " l  AlandcisA[x: :  p] .  I tsuf f iceshere

to apply the substitution lemma to the induction hypothesis.
Ccxollaxv. I.f' there is u normalization model, then euery deriuation is strongly

normalizable.
Pnoop' Let Z be a derivation of C. We first apply the theorem to f with a u de-

fined for C such that sort(u(x)) : x and s empty. We conclude with the soundness
lemma. I

The rest of the paper is devoted to the proof of the hypothesis of the corollary.

$4. The admissible sets. We fix a set theory which we call t and which is to be
sufficiently strong for the formalization of the definit ions of this section. ZF wil l do
quite well but is unnecessarily strong. All that is needed is extensionality, pair
formation' powerset, union, ,4o-separation and a convenient axiom of infinity
(existence of crr)' Fix a model fi of T in which co is standard, i.e. the object whicir
codes in l lt the set of f inite ordinals of l l t is isomorphic to rr-r. In this section we wil l
work inside !Jl- Particularly, we wil l tacit ly suppose that sets, relations and func-
tions are to be elements of ! l?. Syntactic objects l ike terms, formulas and derivations
are identif ied in a canonical way with finite ordinals or, more naturally. with heredi-
tari ly f inite sets (of !Jt). For the time being, we suppose moreover than lJi has ele-
ments u, (for each integer i) such that (in Dl) . ' /:r/,t/(u,) = ui+ t. Hence e) c ui.e

DEFlxlrtoxs. 1. A set a is oJ- sort P ot)er uiiff e is a set of ordered pairs (f, B) such
that,  for  some Q,Z is a der ivat ion of  the formulaQeP and Bis an element of  u, .
a rs sorted oL)er ui iff there is a term p such that a is of sort p'over u,.

We wil l write sort(a) : P rf s is of sort P over ui. Sor(i ) denotes the set of sorted
sets over 4,. Clearly, Sor(i) is not empty and, with Kuratowski's ordered pair,
Sor( i  )  c t l t l9(u,)  e u,*r .

2. A set a is quasi-admissible over ui iff a belongs to Sor(i ) and if for every (2, p)
in a,  B belongs to Sor( i  -  1)  and r  is  a der ivat ion of  the formula sort(B) e sort(a).

3. A quasi-admissible set a rs stable iff for every f and p,(Z,B) belongs to a when-
ever there is a derivation 11 such that (I1, p) belongs to s and f crit i ial ly reduces
to II.

'The proof that such an gJl exists is postponed to the Appendix.
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4. A quasi-admissible set (over r.r,) a is sound iff the following two conditions hold:

(a) For every f and !i., Z is strongly normalizable whenever (f, B) belongs to a.

(b) For every p in Sor(i - 1) and every strongly analytic derivation f of sort(B) e

sort(a),  (Z,p) belongs to a.

5. An admissible set over u, is a stable sound quasi-admissible set over ur. Ll

Adm(i)  is  the set of  admissible sets over u ' .  Tr iv ia l ly ,  Adm(l)  c Sor( i )  9ui+r.

Using the crucial fact that a derivation which crit ically reduces to a strongly

normalizable one is strongly normalizable too, one proves that for every term P

there is an admissible set  of  sort  P over u, . t0

For every integer I and derivation f one defines the relatioo €i..r between elements

of Adm(l)  and Adm(t + 1)as fo l lows:

a e i.t 0 itr (f, a) belongs to P.

Let o be a stratification assignment for a (stratifiable) formula C [term P] and u be

a valuation defined for C ffor P] such that u(r) belongs to Adm(o(x)), for every

variable x occurring free in C [in P]. Every valuation of this kind is in 9Jt. Altt) and

P[u] are defined in a similar way as in $3, and we will define now f, o. u ll- C and

[p,o,un by induct ion on the length of  C and P ( f  is  a der ivat ion of  C[L' ] ) .  Since we

*irh ttrut [P,o,u] be an admissible set of sort P[u], we wil l have to make sure that:

l. $ n, o, D V C and f crit ically reduces to II, then ), o, u l l C;

2.lf Z, o, t) l l  C, then f is strongly normalizable;

3. If t is a strongly analytic derivation of c(rr), then z, o, L) ff- C; and

4.[ ,P,o,  u]  is  of  sort  P[u]  and belongs to Adm(o(P)) .

These facts are to be established while we give the definit ion. However, when C

is of the form P e Q,(A - 
B) or YxA, the proofs are trivial or similar to the corres-

ponding cases of the stabil ity and soundness lemmas in $3. We shall accordingly

omit these cases.

[r .o,ul  :  u(r) .
Z, o, u fF P e 0 itr [P, o, ul eo,", ,t [Q,d", r ' n'
z,o, t :F@-B) i t r , forevery11 suchthatI1,o,ulJ A,we have(r l l ) ,o,  I  l f  B.

2,6,  u l lYxA i f f ,  for  every valuat ion t"  such that u I ,u '  and u'( .x)  belongs to

Adm(o(.x)), we have

)sort(r i ' ( r ) ) ,  o,  t : '  f  A.

[ { r lZ},o,r , l  is  the set  of  those ordered pairs ( f ,a)  such that a belongs to

Adm(o(x)) ,  f  is  of  sort(a) .  { - t  l  Alul t iand f  I ,  o,  t ) '1y A, i f  r ,  1,D'  and tr ' (x)  :  1.

We have to show that [{r lAt,,o,'-] l is admissible. First, if 17 crit ically reduces to

f, then it is also the case that 17J crit ically reduces to fJ and the conclusion that

[{r  lAl ; ,o,ul  is  stable fo l lows from the induct ion hypothesis.

Next,  we not ice that  i f  (Z,q) belongs to [ {x I  At , ,o,u] ,  then, by the induct ion hypo-

thesis, fJ is strongly normalizable and therefore so is f.

to For example, the set of the ordered pairs (f , B) such that p belongs to Sor(i - 1) and f is a strongly

normal izable der ivat ion of  the formula sort(p) e P.

22r
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Finally, if f is strongly analytic, then fJ is also strongly analytic and Z!, o,
u' l l  A by the induction hypothesis.

$5. Main definition. In this section, we will define explicitly a normalization
model -44 Though we wil l use the results obtained inside fi in l i4, we wil l work here
in what is called the real world.

The properties of f i used so far suffice largely for the proof of the normalization
of type theory. In the case of SF, we wil l suppose further that there is an automor-
phism z of  f i  such that,  for  every integer i ,  n(u,) :  u i+r.  Clear ly,  the funct ion z
cannot be in !Jt. The proof that such a model l l t exists (which is not quite obvious)
can be obtained by using a method for constructing rr-r-models with indiscernibles as
is done in [11] .  For the sake of  completeness, we sketch a proof in the Appendix.

Since !l? is c-r-standard, the proof-theoretical entities are fixed by n, i.e.
n(A):  A,n(P):  P and n(Z):  f ,  for  a formula A,aterm P and a der ivat ion ) .
Moreover z(Sor( i ) )  :  Sor( i  + 1),  z(Adm(i  ) )  :  Adm(i  + 1),  and a ei . t  0 i f f
n(a) e,* , . rn( f l ) .

DnFtxlttoN. N is Adm(O), and sort is the restriction to l{ of the function sort
def ined in $4.11

a e z 0 iff a e 0,, rr(P), i.e. iff (2, a) belongs to n([]), for a and l) in l{. I
Clearly, sort is onto (see footnote 10). The relations €, are not coded in !Jt, and we

are not allowed to give the definit ion of iLR 11 below for arbitrary terms of naive
set theory. However it wil l work for the weakly stratif iable ones.

With every term P of SF we associate a stratiJiable term P* and a stratif ication
assignment o". for P* in such a way that P results from P* by substituting variables
for the free variables (for example, P* can be chosen as the term resulting from P
when each free occurrence of a variable has been replaced by a fresh variable).
Without loss of generality, we may suppose that the substitution that transforms P*
into P affects each free variable of P*.

We define A* and oo*,for the weakly stratif iable formula A, in a similar way.
We will write ox instead of or* or on*; the meaning wil l be clear from the context.

Dnptxtrtox. Let ube a valuation into l{, defined for P. [P, u] is n o.(P*)([p*, o*,r*]),
where u*(x)  -  n"*r ' \ (u( .y)) . i f  y  is subst i tuted for x whi le convert ing P* to P, and D*(x)
is undefined if x is not free in P* (o* is o"-). I

Since IP*,o*,u*] ]  belongs to Adm(o*(P*))  and ru is an automorphism of f i ,
Ier1 belongs to N.12

Now we let .1'be the set lt '  with the function sort, the relations €r and the operator
[ , ]  ut  def ined above. Clear ly. , '1- is a normal izat ion structure.  I t  remains to be
shown that -,f is comprehensive, stable and sound.

Let us begin with comprehensiveness. Intuit ively, comprehension should mean
that[{x l ,q} , r ] is thesetof  theorderedpairs (z,a)suchthat z! ,u '  l f - ,4( for  t )1*D' ,
u ' (x)  :  a and a in N).  on the other hand, [ {"1.a},  u]  is  an element of  .v.  From the

r r  More exact ly,  N is a set  canonical ly associated with Adm(0) and sort  is  the funct ion of  the real  wor ld
corresponding to the object sort of gJt, which in lJt is a "function" defined on Adm(g).

r2The next lemma entails that the definition of IP, u_] is independent of the particular choice of p*
and o*.
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usual type-theoretic point of view, such a situation is impossible. So, [{x | /} '  u]

wil l not be this very iet, but rather its code in l{, as it is expressed in part 2 of the

following lemma.
LEuue. l .  2,  u V C t f f  Z,  o*,u* | . i -C*;
Z.n([{x l  A},r ] j  ts t ieserof  theorderedpairs(E,a)suchthatZI,r ' l lA, forDl*D' ,

u ' (x)  :  aandainN.
Pnoor. If C is the formula P e Q, then, using the fact that o*(Q*) : o*(P*) + 1,

we have Z, o*, u* 11- P* e Q* iff

IP*,  o*,  u*]  €o*1p*;  , r [Q*,  o*,  r* ]

iff

7z-, ' - (p.)( [p * ,o*,u*])  eo, ,  n o*(P*) ( [Q*,o*,  r* ] )

i t r  [e u]  €0, ,  f t ( [Q,u])  i t r  E,  u l l  P e Q.t3 One f in ishes by induct ion'

Pnoposlrlox 1 . -f is comprehensiue.

Pnoon. Let u ' (x)  :  s and L,  I ,u ' .  By def in i t ion,  cet  [ t1 lz] '  u l  i f f  d€0,;

z( [ {x |  ,q} ,  , ] ) ,  and, by part  2 of  the lemma, c e o.> z( [ {x I  z} '  
' ] )  

i f f  t l ,  u '  F A'

The substitution piop.rty is easily proved by induction (simultaneously with the

first part of the subititution lemma) using the lemma and the fact that Ir, u]l : u(x).

PnoposlrtoN 2. -{ is stable-

This follows at once from the fact that the admissible sets are stable. D

Pnoposlrlox 3. l' is sound.
pnoor. The cuts in a derivation Z are naturally ordered, e.g. by considering the

left to right order of their first symbol. This order induces a (finite) order on the

derivations to which f reduces in one step. Therefore, if there are reduction se-

quences ofarbitrary finite length starting with f, we can safely define red(f) as the

frsr derivation to which f reduces in one step and having reduction sequences of

arbitrary finite length starting with it. Hence, if there are reduction sequences of

arbitrary finite length starting with a derivation f, then the sequence f, red(f)'

red(red(f)), ... is an infinite reduction sequence. This shows (without invoking

Konig,s lemma) that a derivation is strongly normalizable iff there is a finite bound

to the length of the reduction sequences starting from it.

The rr,r-standardness of fi then implies that a derivation is strongly normalizable

in llt iff it is strongly normalizable (in the real world). The conclusion is now

obvious. I
We have thus proved that -f is a normalization model. Therefore the corollary

to the main theorem imPlies the

Nonue.llzATroN Tunonntr . Euery deriuation of SF is strongly normalizable'

Appendix. We will show that there exists a model fi of the theory t having the

proferties assumed in $$a and 5, namely c-r-standardness, existence of elements

, ,  such that ggg(u,)-ur*,  and existence of  an automorphism z such that

n',(u,) : tt i+ r.The proof we give is a simplif ication of a similar result contained

in [11] .
ihroughout this Appendix, we assume the axiom of choice or, alternatively,

13Here o* is d6.*.
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we move into the constructible universe. We recall the definit ion of the beth
operat ion:  lo(p): l { .  1,- , -  1( t r r )  -2a"tvt  and I i (pr) :  U,.r) , (1t) for  ) . l imi t .  I f  X is a
set and n a natural  number,  [X]  "  ts the set of  subsets of  X having exact ly n elements.

Henceforth,  r  wi l l  denote ) , , , , .  Supposc that there is given a sequence of  funct ions

f  , ,  f r ,  . f  . , . . . ,  each / i  in the sequence being a funct ion f rom [rc]" t r ' r  into rr-r ;  ar( l )  is  a
natural  number.

DnntNtrtoxs. Let H and G be subsets of K. H is said to be n-indiscernible from
G ( in notat ion:  H =nG) i t r  every / ,  is  constant on f l l1"" t ' '  , [G]art . r i )  11 < i  tn) .

Let "fr ' be a family of subsets of x. none of them of size r. .{. rs unbounded iff

and ,fr rs n-ambiquous rff

V/r<nfHe/1 lHl>p.

VH, H'  e "{  H =nH'.

9 e.xtends .{  i t r  (VG e 9)()H e . /1 )  G c H.
PRopclslrloN. ry' .t{ is unbountled and n-ambiuuous, there e,xisrs an unbounded

(n + l)-amhiguous I extendinu .ff.
Pnoop. L With the help of the Ramsey-Erdos-Rado theorem, one shows first that

there is an unbounded .t" extending.;#' such that H' =n*, H', if H' belongs to "f ' ' .
Let p < K,lt infinite, and E a subset of cardinality )u,,, , ,1(lt) of some element of ":tr.
Such an element exists because a^,( f^, , , ( t t )  < r  and . ; {  is  unbounded.By the hy-
pothesis and the Erdos-Rado theorcm, there is an H'  c E such that I  H' l  > t r r .  and
H' =n, H' .  to

2. The cofinality of rc is greater than ro, and each .l', can take at most r;t values.
Therefore, there is an unbounded (n t l)-ambiguous subfamlly of "tr '. I

Now we apply th is proposi t ion to the construct ion d /a Ehrenfeucht-Mostowski
of an rr;-model of T with indiscernibles. We add Skolem function symbols to the
language of the predicate calculus with e and : as noniogical symbols and fix an
interpretat ion of  the Skolem syn"rbols in /^ ( lz^ is the ZF-universe of  sets up to rc)
which makes the defining formulas for the Skolem functions true. We write
V.= (b iff ( satisfies gi for this interpretation.

Let sr ,  s2,  s3: . . .be an enumerat ion of  the Skolem funct ions.  To each.s ' ,
corresponds the function /, from [r]o't" 't into cr-r defined as follows:

l ' , ( ' rat , . . '  r  f lar(s i ) l  )  :  t ,  (4, . ' . . ,  4^. , , , , )

i f  s ; (12", , . . . , \u. t" , , )  belongs to (r) ,  and f , (1d' , . . .  ,unl) :0 else,  for  a,  < ' . .  <
ar(s,)being the ar i ty of  s, .  Using the proposi t ion,  one constructs a sequence,trr ,  f f r ,
. . . of families of sets such that, for every ft,"frn is unbounded and n-ambiguous, each
of them, save .ffr, extending the previous one.

One then adds to the expanded language of t a new set of individual con-
stants c,  indexed by the integers.  The set of  sentences of  the form Q(c, , . . .c;") ,  wi th

t4The Erdds-Rado theorem says that i f  E is a set  of  a cardinal i ty greater than 1o(p),  then for every
funct ion of  [E] f t* t  into p there is a subset I 'of  E of  cardinal i ty greater than p such that the funct ion is
constant on IF]k*1;  in standard notat ion:  lo(p)* 

-  
(p-)0, ' ' .
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i ,  (  .  . .  1 in,  Such that there is an increasing Sequence of  ordinals f l , ,  . . . ,an ln an

element of some .{^ (* > ft, so being the Skolem function corresponding to the

character ist ic funct ion of  d)  wi th the property that  V'*= OlV,," 'V, , , f  forms a

complete Skolem theory containing the sentence , '/, ' /.4(c,) e (' i* r.
Fix a model lJt  of  th is theory in which every object  is  denoted by a c losed Skolem

term. One naturally defines an automorphism z of lJt by the following condition: if ,x

is denoted by r(r ' , ,  " ' ( ' i , , ) then z(.r) is the objcct  denoted by r( t ' , ,  " ' ( ' i , , *  , ) .  Now let t ing.

for  each integer i ,  u,be the element denoted by r ' , ,  we have : '7/ / / (u,)e u,* ,  and

n(u) :  u i+ r ,  as needed.
It remains to be proved that the cr-r of lJt is standard. Every element of or is

descr ibed by a c losed Skolem term of the language that denotes an element of  the

rr; of ! lt. Conversely, if ,x is an element of l)Jl such that lJt F ,x e r,-r and if r(c,, ' ' 'ci,,),

wi th i ,  <. . .<
Therefore,  there is a / t  such that i f  m> I ;  and al . . . . , In and [Jr . . . . ,pnare increasing

sequences of ordinals of (some elements H and G, respectively, of) .{^, then

V', .1 :  t lVp," 'Vt t , , ) '

sequences, then ./ '  defines an

1+ t lv, , " . \ , , )e o and V*= t lV, ," '

I f  we set. / ' ( .x)  equal  to t IV, ," '  2, , , ] ,  for  one of  these

isomorphism between the (D and )Jt and the real one.
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