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STRATIFICATION AND CUT-ELIMINATION

MARCEL CRABBE

Introduction. In this paper, we show the normalization of proofs of NF (Quine’s
New Foundations; see [ 15]) minus extensionality. This system, called SF (Stratified
Foundations) differs in many respects from the associated system of simple type
theory." It is written in a first order language and not in a multi-sorted one, and the
formulas need not be stratifiable, except in the instances of the comprehension
scheme. There is a universal set, but, for a similar reason as in type theory, the
paradoxical sets cannot be formed.

It is not immediately apparent, however, that SF is essentially richer than type
theory. But it follows from Specker’s celebrated result (see [16] and [4]) that the
stratifiable formula (extensionality — the universe is not well-orderable) is a theo-
rem of SF.

It is known (see [ 11]) that this set theory is consistent, though the consistency of
NF is still an open problem.?

The connections between consistency and cut-elimination are rather loose. Cut-
elimination generally implies consistency. But the converse is not true. In the case of
set theory, for example, ZF-like systems, though consistent, cannot be freed of cuts
because the separation axioms allow the formation of sets from unstratifiable
formulas. There are nevertheless interesting partial results obtained when re-
strictions are imposed on the removable cuts (see [1] and [9]). The systems with
stratifiable comprehension are the only known set-theoretic systems that enjoy full
cut-elimination.

Since cut-elimination for stratified set theory trivially implies cut-climination for
type theory, one justly expects that we will extend Girard’s method (see [7], [8],
[12],[14],and [19]), which mirrors in proof theory the construction, by iteration of
the power set operation, of a natural model of type theory. The extension we give
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"The types of this associated system are the natural numbers, € is its sole relation, and the only
nonlogical axioms are the axioms of comprehension.

2 Actually Jensen’s result (in [11]) seems to show more. The system proved consistent is NFU, i.e. NF
with Urelements. In this system, the only nonextensional objects are the atoms, i.e. the empty sets.
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exploits proof-theoretically the technique used by Jensen (in [11]) for the
construction of w-models of SF.?

Girard’s proof of the cut-elimination theorem for type theory requires the exis-
tence of an w-model of type theory. This seems unavoidable, since the normal-
ization of type theory is much stronger than the consistency of type theory,* which
is elementarily provable. The normalization of intuitionistic type theory—without
extensionality —elementarily implies the consistency of classical extensional higher
order arithmetic.®> In the case of NF, the situation is a little bit different. The
normalization of the nonextensional intuitionistic system implies of course the
consistency of the system; and, because Godel’s negative interpretation works in
this case, this in turn implies the consistency of the classical nonextensional system.
However, contrary to what happens in type theory, it is not known how to
extensionalize models of the nonextensional fragment of NF without destroying
comprehension axioms.

The proof that we present here below does not require more than the existence of
an w-model of NFU (see footnote 2). In fact, the result can be established in NFU
plus Rosser’s axiom. But since we do not suppose that the reader is acquainted with
the NF literature, we will not follow this path here. We will instead carry out the
proof directly in ZF.

§1. Naive set theory. As everybody knows, naive set theory is inconsistent.
Nevertheless, we will recall the language and the natural deduction rules for this
system essentially because its proof theory is not trivial and because every set theory
worth studying must seemingly be a part of a system of this kind. The material of
this section is therefore usable for the study of consistent fragments.

1.1. Terms and formulas. Well-formed expressions are built up from a denumer-
ably infinite sequence of variables and the symbols —, V, €, { ‘ },(,and ).

The notions of term and formula are defined as follows:

A variable is a term.

If P and Q are terms, then P € Q is a formula.

If A and B are formulas and if x is a variable, then (4 — B) and Vx4 are formulas
(the occurrences of x in VxA are bound).

If A is a formula and x a variable, then {x|4} is a term (called abstract; the
occurrences of x in {x| A4} are bound).

*Jensen’s idea is, following Specker’s suggestion (in [17]), to construct a model of type theory with a
shifting automorphism sending objects of a given type to the next one (the types are the natural numbers).
He achieves this by showing how to make the types indiscernible — thereby loosing extensionality. The
main tool used for that is Ramsey’s theorem. This is sufficient for the proof of the consistency of the
system. The method generalizes, however, and enables one to construct an w-model as well. But in this
case Ramsey’s theorem is not strong enough, and an exploitation of the Erdos-Rado theorem is
necessary.

*See footnote 1.

*This can be seen by first adding the axioms of arithmetic without induction, then performing a
negative interpretation of the classical system (which works pretty well when extensionality is not
present), and, finally, making an extensional interpretation.
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A sentence [closed term] is a formula [term] having no free occurrences of
variables.

1.2. Derivations and cut elimination. We now proceed to the formulation of the
natural deduction rules for naive set theory. These rules are according to the gist of
natural deduction not relations between formulas but procedures to construct
derivations, i.e. formal proofs. Derivations will be coded in an extended typed 4-
calculus along the line of an idea of Curry (see [5, 9E]) revisited by Howard in [10].
We now present the language for the formulation of the derivations.

For each formula A, there is a denumerably infinite sequence of assumptions,
called assumptions of A. To be formal about it we identify the ith assumption of A4
with the ordered pair (i, 4). The same letters will be used for assumptions and
variables (we hope that no confusion will arise). Though we will use the ordinary
mode of speech concerning the bound and free occurrences, we will tacitly suppose
that this problem is solved by using a method like that of Bourbakiin [2, Chapter 1,
§1] or de Bruijn in [6]—the net result being that expressions differing only with
regard to bound variables are identified.

We define the notions of derivation of a formula (its conclusion) and of free and
bound occurrences of an assumption or of a variable in a derivation simultancously:

An assumption x of Ais a derivation of 4 in which x is the sole (free) occurrence of
an assumption; the free occurrences of variables in x are those in A.

Introduction of —. If X is a derivation of conclusion B and x is an assumption of
A, then AxZ is a derivation of (4 — B); the occurrences of x in AxZ are bound, and
the other ones (of assumptions or of variables) remain bound or free as they are in A
and Z.

Elimination of —.If X is a derivation of the conclusion (4 — B) and II a
derivation of A, then (XI1) is a derivation of B; an occurrence is free or bound in
(ZImiff itissoin X or I1.

Introduction of V. If X is a derivation of the conclusion 4 and x is a variable not
occurring free in a free occurrence of an assumption in 2, then VxZ is a derivation of
VxA; the occurrences of x are bound in VxZ, the other ones (of assumptions or of
variables) remain bound or free as they are in 2.

Elimination of ¥. If X is a derivation of the conclusion VxA4 and P is a term, then
(ZP) is a derivation of the conclusion A[x:= P]; the occurrences remain free or
bound as they are in X or P. (A[x:= P] is the result of the substitution of P for x at
the free occurrences of x in A, up to a renaming of bound variables if necessary.)

Introduction of {| }. If £ is a derivation of A[x:= P}, then (1P e {x|A})Zisa
derivation of Pe {x|A}; the free and bound occurrences of assumptions in
(TP € {x| A})X are the same as in X; the free and bound occurrences of variables in
(1P € {x|A})X arethesameasin X or P € {x| A}. We will abbreviate (TP € {x A)Z
as 12

Elimination of {| }. If 2 is a derivation of the conclusion P € {x| A}, then(Z])is
a derivation of A[x:= P]; free and bound occurrences in (Z}) are the same as in X.

A closed derivation is a derivation without free (occurrences of ) assumptions. 4 is
a theorem of (a fragment of ) naive set theory if there is a closed derivation of A.

For the sake of readability, we will use the current conventions on parentheses:
omitting them when they are necessary, adding them-when not necessary;
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particularly, when parentheses are missing in expressions of the form T, T, --- T, we
associate to the left: {---(T\T5)--- T,).

If ¥ and II are derivations, and x is an assumption of the same formula as the
conclusion of 7, then X[x:= IT] is the derivation resulting from the substitution in
2 of Il at the free occurrences of x—possibly up to a renaming of bound
assumptions.

If X'is a derivation, P is a term and x is a variable, then X[x:= P] is the deriva-
tion resulting from the substitution in X of P at the free occurrences of x. For-
mally X[x:= P] is defined by induction on X, starting from the initial clause:
(i, A)[x:= Pl =(i,A[x:= P]).

1.3. Cut elimination. We are now in a position to formulate the

CuT-ELIMINATION RULES. a) (AxZ)IT immediately reduces to Z[x:= IT].

b) (Vx2)P immediately reduces to X[ x:= P].

¢) (12)] immediately reduces to X.

A cut in a derivation is an occurrence in the derivation of a derivation of one of
the forms indicated at the left in the cut-climination rules, i.e. (AxX)I1, (VxX)P or
(T2){. A derivation is normal if it contains no cuts. A derivation X reduces in one step
to IT iff I1 is obtained by removing a cut in X as prescribed by the cut-elimination
rules. A reduction sequence is a sequence of derivations X, X,,... such that X,
reduces in one step to 2;, , if X, is in the sequence. X reduces to IT if there is a
reduction sequence starting with 2 and ending in II. A derivation X is strongly
normalizable iff each reduction sequence starting with X is finite.

Clearly, a strongly normalizable derivation reduces to a normal one.

REMARK. It is well known that the inconsistency of naive set theory is a con-
sequence of Russell’s paradox. In the present context, it is formulated as follows.
Let 4 be any formula and consider the abstract R,: {z|(ze z— A)}. Let x be
an assumption of R, € R,; then Ax(x|x)(14ix(x|x)) is a closed derivation of A.
However, this derivation does not reduce to a normal one. More generally, it is
elementarily provable that there is no normal closed derivation of VxVyx ey
(one cannot cut-freely prove an absurdity). Therefore the collection of cut-free
provable theorems of naive set theory is a natural paraconsistent set theory (see
[13, pp. 94-957).

§2. Stratified set theory. Roughly speaking, a stratifiable formula is a formula
that one gets when one erases the types in a formula of type theory.

DEFINITIONS. A weak stratification assignment for a formula C is a function from
the occurrences of terms in the formula to the integers satisfying the following
requirements:

At an occurrence of the formula P € Q in C, the value of Q is i iff the value of P
isi—1.

At an occurrence of the term {x| A4} in C, each occurrence of x in {x|A} has the
same value i and the value of {x|A}isi+ 1.

At an occurrence of the formula VxA in C, each occurrence of x has the same
value.
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A stratification assignment for C is a weak stratification assignment such that, for
every variable x, all occurrences of x in C have the same value.

Similarly, a weak stratification [stratification] assignment for an abstract {x]A}is
a weak stratification [stratification] assignment for A such that each occurrence of x
has the same value.

A formula or term is weakly stratifiable [stratifiable] if there is a weak
stratification [stratification] assignment for it.

For example, Russell’s terms {z|(z € z — A)} are not weakly stratifiable, but the
formula (z € = — A4) is weakly stratifiable— though not stratifiable—if A4 is weakly
stratifiable.

Clearly, a sentence or closed term is stratifiable iff it is weakly stratifiable.

The system SF. SF (stratified foundations) is the fragment of naive st theory that
results from the restriction that the abstracts have to be weakly stratifiable.

REMARKS. 1. It is quite routine to show that the theorems of SF are exactly the
formulas provable in nonextensional intuitionistic NF (with abstracts) without 1,
A. v and 3. We could have added more logical constants and/or the classical
double negation rule and appended the appropriate cut-elimination rules. Every-
thing would then have worked out rather well, but the matter would have become
much more involved without adding anything new to what happens in other systems
(see [9] for a detailed presentation).

2. In order that the derivations behave nicely through reduction, which supposes
that the abstracts are closed under substitution, we have formulated the system with
the concept of weak stratification instead of that of stratification. If we had used
only stratifiable terms, we would not have lost any theorem, but then 2[x:= P]
would not necessarily be a derivation if (VxX)Pisa derivation, and some theorems
would not be cut-free provable for the trivial reason that the cut-elimination rules
would be undefined for some cuts (more on this point in [3]).

§3. Main theorem. This section is devoted to the proof of a theorem which may
be seen as an abstract reformulation of the Gentzen-Prawitz Hauptsatz in the line of
Tait [18] and Girard [7].

DEFINITION. A sorted structure .4 is a set N with a function sort sending the
elements of N onto the terms of SF, and with, for each derivation Z, a relation €5 on
N such that, if f €5 %, then X is a derivation of sort(f§} € sort(x).®

We call P the sort of « if sort(x) = P.

DEFINITION. A valuation is a function whose domain is a finite set of variables. If v
and v’ are valuations agreeing on all the variables (other than x) for which both are
defined and if ¢’ is defined for x, then we write v <, v".

A valuation is defined for a formula [term] iff it is defined for every variable
occurring free in the formula [term]. [l

If 4" is a sorted structure and v is a valuation defined for 4 and taking valuesin N,
we will denote by A[v] the formula resulting from A through the simultaneous
substitution for each free variable x in A of the term sort(v(x)). P[v] is defined
analogously.

%f e, « intuitively means that f§ belongs to « for the reason X.
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DEFINITION. A normalization structure is a sorted structure A~ equipped with an
operator [, [, such that for each term P and valuation v defined for P and taking
values in N, [P, v] belongs to N and is of sort Plv]. O

Let 4" be a normalization structure. If v is a valuation into N defined for C and
if 2 is a derivation of C[v], we define inductively the relation Z, v |- C as follows:’

2,okPeQiff [Puv] e [Q,v].

2, v (A — B) iff, for every IT such that IT, v A4, (ZI), v | B.

2, vit-VxA iff for every valuation v’ such that v'(x) belongs to N and v <, v/,
2 sort(v'(x)), v’ I A.

In order to be able to state the theorem below, we have to introduce some further
definitions concerning the normalization structures.

3.1. Comprehensiveness. The normalization structure A is comprehensive iff (a)
the comprehension axiom holds in the sense that

xeg[{x|A},v] iff Z|, v} A (forv <, v"and v'(x) = a),

and (b) [P[x:= Q],v] = [Pv'],if v < v and v'(x) = [Q,v].

SUBSTITUTION LEMMA. If A is comprehensive, then:

L Ziof-Alx:= Q1iff Z,v' | A (if v<_ v and v'(x) =[0Q,v]);

2. if 2, v-VYxA and v is defined for Q, then 2Q[v]), v A[x:= Q];

3ok Qe{x|A}liff 2|, v A[x:= Q].

The inductive proof of 1 is straightforward. The two other parts follow from the
first.

3.2. Stability. We introduce first the notion of critical reduction.

@) AxX)IT, - T, critically reduces to 2[x:=M]T;---T,, provided II is a
strongly normalizable derivation.8

(b) (VxZ)PT, --- T, critically reduces to >[x := P]Ty---T,.

(©) (PX)Ty - T, critically reduces to 2T, T,

In the possibly empty sequence T; - -- T}, the T;'s are either derivations, or terms, or
the symbol |.

DEFINITION. The normalization structure A4 is stable iff the following condition
holds: if x g, fand ¥ critically reduces to I7, then « e, .

STABILITY LEMMA. If A" is stable, then if 11, vt C and X critically reduces to 11,
then 2, v C.

PROOF (Induction on C). The starting case, when Cis P € Q, is nothing more than
a reformulation of the hypothesis.

Suppose that IT, v }-(4 - B) and that X critically reduces to I1. If @, v |- A, then
110, v i+ B. By the induction hypothesis, £, v f- B because 2@ critically reduces
to 110.

Suppose that > critically reduces to I7, and that II, v VxA. If v <, v, then
Zsort(v'(x)) critically reduces to IIsort(v'(x)) and sort(v'(x)), v’ | A. By the in-
duction hypothesis Zsort(v'(x)), v’ |- A.

7%, v~ C may be read: “Z forces C, relative to v” or “Z is a valid proof of C, modulo »”.
8The necessity of this restriction will become apparent in §§4 and 5 (see, for example, footnote 10).
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3.3. Soundness.

DEFINITION. An analytic derivation is a derivation of the form xT---T,, where
x is an assumption and the T;'s are either derivations, terms or the symbol |. A
strongly analytic derivation is a strongly normalizable analytic derivation. [

In particular, every assumption is strongly analytic.

DEFINITION. The normalization structure A4~ is sound iff the following two
conditions hold:

(a) If « €, f, then X is strongly normalizable.

(b) If X is strongly analytic, then « €; f.

SOUNDNESS LEMMA. If A" is sound, then

1. if 2, v} C, then X is strongly normalizable, and

2. if X is a strongly analytic derivation of C[v], then Z, v - C.

PrOOF. The two parts are proved conjointly by induction on C. Suppose that Z,
v (4 - B). By the second induction hypothesis, Zx, v - B if x is an assumption of
sort A[v]. It follows by the first induction hypothesis that Zx is strongly nor-
malizable, whence so is 2.

Let  be a strongly analytic derivation of (4 — B)[v]. Then, by the first induction
hypothesis, if I1, v |- A, then IT is a strongly normalizable derivation of A[v]. It
follows that ZIT is strongly analytic. Therefore, by the second induction hypoth-
esis, 211, v i+ B.

If £, vlVxA, then Zsort(v'(x)), v' -4 (if v<,v’ and v’(x) in N). By the first
induction hypothesis, Zsort(v'(x)) is strongly normalizable, and so is 2.

Let X be a strongly analytic derivation of ¥VxA[v]. Then, for every term P, 2P is
strongly analytic too. Hence, by the second induction hypothesis, P, v" |- A for
every v such that v <, v" and v'(x) is of sort . [

DEFINITION. A normalization model is a comprehensive, stable and sound
normalization structure. [J

Let 4" be a normalization structure. If vis a valuation into N, Z[v] will denote the
derivation resulting from the simultaneous replacement of each free variable x of 2,
for which v is defined, by sort(v(x)).

If sis a function such that for every assumption x (for which s is defined), s(x) is
a derivation of the same conclusion as x, then £[s] is the derivation resulting from
the simultaneous substitution of s(x) for each free assumption x in 2 for which s is
defined.

TuroREM. If A is a normalization model and X' is a derivation of C, then Z[v][s],
v i+ C for eachv(defined for C)and s such that s(x[v]),v - A (if x is an assumption of A
and s is defined for the assumption x[v]).

PrOOF (Induction on the construction of X). If £ is an assumption, X[v][s],v - C
by hypothesis or the soundness lemma, according to whether s is defined or not for
Zv].

Introduction of —. Zis AxITand Cis(4 — B). Let O, v |- 4. We want to prove that
(4xI)[v][s]10, v } B. By the soundness lemma, O is strongly normalizable. It is
therefore sufficient, due to the stability lemma, to show that IT[v] [s'],v i B, where s’
is like s with the possible exception that s'(x[v]) = &. The result follows from the
induction hypothesis.
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Elimination of —. X is 110, I1 is of (A4 — C) and @ is of A. By the induction
hypothesis, IT[v][s], v - (4 — C) and O[] [s], v - A, whence Z[v][s], v I C.

Introduction of V. X is VxII and C is VxA. We have to show that
(VxID)[v][s]sort(v'(x)), v' | A, if v<,v" and v'(x) belongs to N. But as x is not
free in a free assumption of I, (VxIT)[v] [s]sort(v'(x)) critically reduces to IT[v'] [s].
The result then follows from the stability lemma and the induction hypothesis.

Elimination of V. X is II1P, IT is of YxA and C is A[x:= P]. By the induction
hypothesis, IT[v][s], v - Vx A, whence 2[v][s], v A[x:= P], by the substitution
lemma.

Introductionof { | }. Zis(1Pe{x|A})[Tand Cis P e {x|A}. We wish to show
that T/I{v][s], v |- P € {x| A}. By the substitution lemma, it suffices to show that
TH[v][s]], viA[x:= P]. By the stability lemma it is sufficient to have that
1[v][s], v A[x:= P], which is the induction hypothesis.

Eliminationof {| }. XisI|,Il1of P e {x| A4} and Cis A[x:= P]. It suffices here
to apply the substitution lemma to the induction hypothesis.

COROLLARY. If there is a normalization model, then every derivation is strongly
normalizable.

PROOF. Let X be a derivation of C. We first apply the theorem to X with a v de-
fined for C such that sort(v(x)) = x and s empty. We conclude with the soundness
lemma. [J

The rest of the paper is devoted to the proof of the hypothesis of the corollary.

§4. The admissible sets. We fix a set theory which we call T and which is to be
sufficiently strong for the formalization of the definitions of this section. ZF will do
quite well but is unnecessarily strong. All that is needed is extensionality, pair
formation, powerset, union, A,-separation and a convenient axiom of infinity
(existence of w). Fix a model M of T in which w is standard, i.e. the object which
codes in 9t the set of finite ordinals of Wi is isomorphic to w. In this section we will
work inside 9. Particularly, we will tacitly suppose that sets, relations and func-
tions are to be elements of M. Syntactic objects like terms, formulas and derivations
are identified in a canonical way with finite ordinals or, more naturally, with heredi-
tarily finite sets (of ). For the time being, we suppose moreover than 9 has ele-
ments u; (for each integer i) such that (in 9%) PPPu) < upy . Hence o < u,.°

DEFINITIONS. 1. A set « is of sort P over u, iff « is a set of ordered pairs (Z, ) such
that, for some Q, 2 is a derivation of the formula Q € P and B is an element of u,.
a is sorted over u; iff there is a term P such that « is of sort P over u;.

We will write sort(x) = P if « is of sort P over u;. Sor(i) denotes the set of sorted
sets over u;. Clearly, Sor(i) is not empty and, with Kuratowski’s ordered pair,
Sor(i) € 222 (u;) < u,, ,.

2. A set a is quasi-admissible over u, iff belongs to Sor(i) and if for every (Z, f)
in %, f§ belongs to Sor(i — 1) and X is a derivation of the formula sort(f3) € sort(x).

3. A quasi-admissible set x is stable iff for every X'and f, (Z, §) belongs to « when-
ever there is a derivation /I such that (11, §) belongs to « and X critically reduces
to I1.

The proof that such an Mt exists is postponed to the Appendix.
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4. A quasi-admissible set (over u;) & is sound iff the following two conditions hold:

(a) For every X and B, X is strongly normalizable whenever (2, B) belongs to a.

(b) For every fin Sor(i — 1) and every strongly analytic derivation X of sort(f) e
sort(a), (X, #) belongs to .

5. An admissible set over u; is a stable sound quasi-admissible set over u;. []

Adm(i) is the set of admissible sets over u;. Trivially, Adm(i) < Sor(i) € u; ;-
Using the crucial fact that a derivation which critically reduces to a strongly
normalizable one is strongly normalizable too, one proves that for every term P
there is an admissible set of sort P over u;."°

For every integer i and derivation X one defines the relation €, y between elements
of Adm(i) and Adm(i + 1) as follows:

we s B iff (Z,0) belongs to B.

Let ¢ be a stratification assignment for a (stratifiable) formula C [term P] and v be
a valuation defined for C [for P] such that v(x) belongs to Adm(a(x)), for every
variable x occurring free in C [in PJ. Every valuation of this kind is in 9. A[v] and
P[v] are defined in a similar way as in §3, and we will define now X, 0. v - C and
[P,o,v] by induction on the length of C and P (2 is a derivation of C[v]). Since we
wish that [ P, o, v] be an admissible set of sort P[v], we will have to make sure that:

1. If 11, o, v - C and X critically reduces to I1, then 2, o, v |- C;

2. 1f X, 0, v} C, then X is strongly normalizable;

3. If X is a strongly analytic derivation of C(v), then Z, o, v - C; and

4. [P,o,v] is of sort P[v] and belongs to Adm(a(P)).

These facts are to be established while we give the definition. However, when C
is of the form P € Q, (A — B) or ¥xA, the proofs are trivial or similar to the corres-
ponding cases of the stability and soundness lemmas in §3. We shall accordingly
omit these cases.

[x,0,v] = v(x).

S, 0,0FPeQiff [Pa,v] €yp s [Q.0.0]

X, 0,0 (A — B)iff, for every IT such that I, g, v I A, we have (X1]), o, v |+ B.

I, 6, v - VxA iff, for every valuation ¢’ such that v < v’ and v/(x) belongs to
Adm(ag(x)), we have

Zsort(v'(x)), o, v’ | A.

[{x|A4},0,v] is the set of those ordered pairs (X,a) such that « belongs to
Adm(o(x)), Z is of sort(x) € {x|A[v]} and Z|, 0, v" |- 4, if v <, v" and v'(x) = x.

We have to show that [{x| A}, 0, v] is admissible. First, if IT critically reduces to
>, then it is also the case that I1| critically reduces to 2| and the conclusion that
[{x| A}, 0,v] is stable follows from the induction hypothesis.

Next, we notice that if (2, «) belongs to [ {x | 4}, a,v], then, by the induction hypo-
thesis, 2| is strongly normalizable and therefore so is 2.

10For example, the set of the ordered pairs (2, f) such that f8 belongs to Sor(i — 1) and 2 is a strongly
normalizable derivation of the formula sort(f3) € P.
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Finally, if 2 is strongly analytic, then X| is also strongly analytic and X|, o,
v’ - A by the induction hypothesis.

§5. Main definition. In this section, we will define explicitly a normalization
model .4~ Though we will use the results obtained inside 9 in §4, we will work here
in what is called the real world.

The properties of Yt used so far suffice largely for the proof of the normalization
of type theory. In the case of SF, we will suppose further that there is an automor-
phism 7 of 9 such that, for every integer i, n(u;) = u,, ,. Clearly, the function =
cannot be in M. The proof that such a model M exists (which is not quite obvious)
can be obtained by using a method for constructing w-models with indiscernibles as
is done in [11]. For the sake of completeness, we sketch a proof in the Appendix.

Since M is w-standard, the proof-theoretical entities are fixed by =, ie.
n(A) = A, n(P) = P and n(X) = Z, for a formula A4, a term P and a derivation X.
Moreover  n(Sor(i)) = Sor(i + 1), n(Adm(i)) = Adm(i + 1), and o€, f iff
(@) €4 1 s 7(B).

DErFINITION. N is Adm(0), and sort is the restriction to N of the function sort
defined in §4.1!

a ey il a ey yn(p), ie. iff (Z,a) belongs to n(f), for e and fin N. [

Clearly, sort is onto (see footnote 10). The relations €; are not coded in M, and we
are not allowed to give the definition of | P, | below for arbitrary terms of naive
set theory. However it will work for the weakly stratifiable ones.

With every term P of SF we associate a stratifiable term P* and a stratification
assignment gp. for P* in such a way that P results from P* by substituting variables
for the free variables (for example, P* can be chosen as the term resulting from P
when each free occurrence of a variable has been replaced by a fresh variable).
Without loss of generality, we may suppose that the substitution that transforms P*
into P affects each free variable of P*.

We define A* and g,., for the weakly stratifiable formula A4, in a similar way.
We will write ¢* instead of op. or g,.; the meaning will be clear from the context.

DEFINITION. Let v be a valuation into N, defined for P. [ P,v]is 7~ =[] P*, o*, v*]),
where v*(x) = n7"9(v(y)), if y is substituted for x while converting P* to P, and v*(x)
is undefined if x is not free in P* (6% is o).  [J .

Since [ P*,a* v* | belongs to Adm(c*(P*)) and = is an automorphism of N,
[P,v] belongs to N.12

Now we let 4" be the set N with the function sort, the relations e, and the operator
[, ] as defined above. Clearly 4" is a normalization structure. It remains to be
shown that .4" is comprehensive, stable and sound.

Let us begin with comprehensiveness. Intuitively, comprehension should mean
that [{x| A4}, v] is the set of the ordered pairs (£, ) such that Z|, v’ f A (for v <, v,
v'(x) = aand « in N). On the other hand, | {x|A}, v] is an element of N. From the

""More exactly, N is a set canonically associated with Adm(0) and sort is the function of the real world
corresponding to the object sort of 9, which in M is a “function” defined on Adm(0).

The next lemma entails that the definition of | P,v] is independent of the particular choice of P*
and o*.
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usual type-theoretic point of view, such a situation is impossible. So, I{x|A},v]
will not be this very set, but rather its code in N, as it is expressed in part 2 of the
following lemma.

LEMMA. 1. Z, o - Ciff Z, 0% v* |-C*;

2. n([{x| A}, v])is the set of the ordered pairs (X, o) such that |, v" | A, forv <, v',
v'(x) = o and ain N.

PRrOOE. If C is the formula P € Q, then, using the fact that 6*(Q*) = c*(P*) + 1,
we have 2, o*, v* - P* € Q*iff

[P*, a* v*] €upr.s [Q*, 0% v*]
iff
nva"(P*)([P*’ 0'*, U*]]) €o.5 n—n*(P*) ([Q*,O'*, v*]])

iff [P,v] €0y n([Q,v])iff Z, v - P € Q."* One finishes by induction.

PROPOSITION 1. A" is comprehensive.

ProOF. Let v'(x) =« and v<, v’ By definition, ae;[{x|A}, v] iffl a€o;
n([{x| A}, v]), and, by part 2 of the lemma, x & n([{x| A}, o])iff 2|, v"{ A

The substitution property is easily proved by induction (simultaneously with the
first part of the substitution lemma) using the lemma and the fact that | x, v} = v(x).

PROPOSITION 2. A" is stable.

This follows at once from the fact that the admissible sets are stable. [

PROPOSITION 3. A" is sound.

ProoF. The cuts in a derivation X are naturally ordered, e.g. by considering the
left to right order of their first symbol. This order induces a (finite) order on the
derivations to which X reduces in one step. Therefore, if there are reduction se-
quences ofarbitrary finite length starting with Z, we can safely define red(Z) as the
first derivation to which X reduces in one step and having reduction sequences of
arbitrary finite length starting with it. Hence, if there are reduction sequences of
arbitrary finite length starting with a derivation 2, then the sequence X, red(X),
red(red(X)), ... is an infinite reduction sequence. This shows (without invoking
Konig's lemma) that a derivation is strongly normalizable iff there is a finite bound
to the length of the reduction sequences starting from it.

The w-standardness of 9 then implies that a derivation is strongly normalizable
in M iff it is strongly normalizable (in the real world). The conclusion is now
obvious. [J

We have thus proved that 4" is a normalization model. Therefore the corollary
to the main theorem implies the

NORMALIZATION THEOREM. Every derivation of SF is strongly normalizable.

Appendix. We will show that there exists a model It of the theory T having the
properties assumed in §§4 and 5, namely w-standardness, existence of elements
u; such that #22(u;)) < u, ., and existence of an automorphism 7 such that
n(u;) = u;4,. The proof we give is a simplification of a similar result contained
in[11].

Throughout this Appendix, we assume the axiom of choice or, alternatively,

B3Here o* is ac..
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we move into the constructible universe. We recall the definition of the beth
operation: Jo(p) = . 2,4 (1) =27 and () = (s« 2 for Z limit. If X is a
set and »n a natural number, [ X ]" is the set of subsets of X having exactly n elements.

Henceforth, k will denote 1, . Suppose that there is given a sequence of functions
fis f, f5.....each f;in the sequence being a function from [«x]*/" into w; ar( f;)is a
natural number.

DEfFINITIONS. Let H and G be subsets of K. H is said to be n-indiscernible from
G (in notation: H =, G) iff every f; is constant on [H]*"V) U [G]*V) (1 < i < n).

Let # be a family of subsets of x, none of them of size k. # is unbounded iff

Vu < wdH e # |H| > u,
and # is n-ambiguous iff
VH.H e # H=,H'

G extends # it (VGe¥)IHe #)G < H.

PROPOSITION. If # is unbounded and n-ambiguous, there exists an unbounded
(n + 1)-ambiguous 4 extending .

ProoF. 1. With the help of the Ramsey-Erdos-Rado theorem, one shows first that
there is an unbounded #" extending # such that H =, | H', if H' belongs to .#".
Let u < k, pinfinite, and E a subset of cardinality 3, ,,(1) of some element of .#.
Such an element exists because 1, ., (#) < k and #" is unbounded. By the hy-
pothesis and the Erdés-Rado theorem, there is an H' < E such that |H'| > u, and
H =, H.

2. The cofinality of k is greater than w, and each f; can take at most w values.
Therefore, there is an unbounded (n + 1)-ambiguous subfamily of #'. [

Now we apply this proposition to the construction a la Ehrenfeucht-Mostowski
of an w-model of T with indiscernibles. We add Skolem function symbols to the
language of the predicate calculus with € and = as noniogical symbols and fix an
interpretation of the Skolem symbols in V, (V, is the ZF-universe of sets up to x)
which makes the defining formulas for the Skolem functions true. We write
V. = ¢iff V, satisfies ¢ for this interpretation.

Let s,, s,, S3,... be an enumeration of the Skolem functions. To each s
corresponds the function f; from [x]** into  defined as follows:

Jilons oty )) = iV Vo)

if 5;(Vys.os Vi) belongs to o, and fi({ay,...,a,}) = 0 else, for oy <+ < oy
ar(s;) being the arity of s;. Using the proposition, one constructs a sequence #,, 7,
... of families of sets such that, for every n, #, is unbounded and n-ambiguous, each
of them, save J#,, extending the previous one.

One then adds to the expanded language of T a new set of individual con-

stants c; indexed by the integers. The set of sentences of the form ¢(c;, -+ - ¢; ), with

'“The Erd6s-Rado theorem says that if E is a set of a cardinality greater than J,(p), then for every
function of [E]** " into y there is a subset F of E of cardinality greater than g such that the function is

constant on [F]*"': in standard notation: J,(s)” — (1)~ L.
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i, <--- <i,.such that there is an increasing sequence of ordinals a;,...,%, In an
element of some .#,, (m > k, s, being the Skolem function corresponding to the
characteristic function of ¢) with the property that V, = ¢[V,,---V, ] forms a
complete Skolem theory containing the sentence #22(¢;) S ¢4 .

Fix a model 9 of this theory in which every object is denoted by a closed Skolem
term. One naturally defines an automorphism 7 of M by the following condition:if x
is denoted by 1(c;, -+ ¢; ) then (x) is the object denoted by t(¢;, -+ - ¢;, + ). Now letting,
for each integer i, u; be the element denoted by ¢;. we have #22(u;) < u;,, and
n(u;) = u; 4, as needed.

It remains to be proved that the w of M is standard. Every element of o is
described by a closed Skolem term of the language that denotes an element of the
w of M. Conversely, if x is an element of M such that M = x € w and if t(c;,---¢;),
withi, <--- < i,,denotes x, then the sentence t(¢;, -+ - ¢; ) € w belongs to the theory.
Therefore, there is a k such that if m > k and %,,...,%, and f,,..., 5, are increasing
sequences of ordinals of (some elements H and G, respectively, of) .#,,, then

Vos il V,lew and Ve[V, -V, 1=V, V1

If we set f(x) equal to ([V, ---V, ], for one of these sequences, then f defines an
isomorphism between the w and 9t and the real one.
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