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1. Introduction

By traditional logic is generally meant a whole body of theories that
formed the realm of logic before contemporary logic was discovered by
Frege. This logic is not strictly speaking Aristotle’s theory, though it
stemmed from Aristotle. Indeed it took also advantage of contribu-
tions by the Stoics and developed to a great extent during the Middle
Ages and in modern times. It is certainly not limited to the theory of
syllogisms, although this formed its core, at least in education.

c© 2003 The Review of Modern Logic.
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There are essentially three ways to consider the relations between the
old and the present logics. The first one (exemplified by the few still
existing old-fashioned logicians) is to see the two logics as incomparable
in the sense that the first one is viewed as essentially non-mathematical,
but inseparable from philosophical conceptions about the natures of
knowledge, thought, argumentation and language. The second one
(instantiated by Russell) is to consider the traditional logic as a trivial
part of the larger system constituted by predicate logic or higher order
logic. The third one (initiated by  Lukasiewicz [4]) is to consider this
logic as a system deserving study on its own, like other systems such as
modal logic, propositional logic, Boolean algebra, lattice theory, etc.

In this paper we adopt this last perspective and we concentrate on
the contemporary approach to traditional logic, more specifically to
the traditional theory of syllogisms. So we won’t refer to this stuff
as traditional logic, or worse Aristotelian logic, but we will consider
it as an ordinary theory independent of its various traditional moti-
vations. Although this will make our investigation quite disconnected
from the traditional concerns, it will however be interesting to keep it
loosely connected with the traditional techniques, and, especially, with
traditional terminology. In particular, we will not insist on the inter-
pretation of the Aristotelian theory nor worry about its accuracy, as is
done in  Lukasiewicz [4], Corcoran [2] or Smiley [7].

The traditional field contains a proof theoretic approach and a se-
mantic one. The first one is mainly devoted to the reduction of the
validity of the syllogisms to the validity of some of them treated as
axioms: Barbara, Celarent, Darii and Ferio. The semantics on the
other hand consists in a set of rules motivated in various ways (among
which the famous middle term rule) that select the correct syllogisms.
The completeness can be established almost empirically, because there
are no more than 24 valid forms of syllogisms among the 256 possible
forms. This feeling of triviality or at least of “much ado about noth-
ing” that one has when faced with this traditional stuff — combined,
we must add, with the general impression that “though this be mad-
ness, yet there is a method in it” — will be slightly attenuated here
by not imposing exactly two premises in the definition of the notion of
syllogism, so that we will have an infinity of valid forms.

Another semantic approach was investigated in a more recent tra-
dition, namely the class or set interpretation, as can be found in the
diagram method and of course in the theory of Boolean algebras. This
treatment is however not completely adequate, because it proves valid
some forms whose traditional validity seems to be questionable. These
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forms can be divided into two categories: those that derive immedi-
ately from a valid reasoning by structural rules, like “No a is b, Every
b is c. Therefore No b is a”; and those that don’t result from a valid
reasoning in that way, like the logical truth “Every a is a”.

After a proof-theoretic study of the sequents of traditional sentences,
the paper consists mainly in two parts. In the first one, we prove the
analogue of traditional completeness relative to a semantics formulated
in the old terminology. In the second one, we show the completeness
relative to a semantics in the present sense. This latter semantics
is twofold. Our first treatment uses abstract structures, called Aris-
totelian algebras, which enable more flexibility than the natural class
interpretation and will exclude such by-products as the logical theses.
Our second treatment uses class algebras, called Aristotelian families,
which will be characterized as special Aristotelian algebras.

2. The language

We suppose that we have a set of constants denoted by the letters a,
b, c,. . . . The sentences of the language are of the form: Aab, Iab, Eab,
Oab, which are usually read “Every a is b”, “Some a is b”, “No a is b”
and “Some a is not b”.

A universal sentence is one of the form Aab or Eab; a particular
sentence, one of the form Iab or Oab; an affirmative sentence, one of
the form Aab or Iab; a negative sentence, one of the form Eab or Oab.

Definition of negation (contradiction): Aab ≡def Oab, Iab ≡def Eab,
Oab ≡def Aab, Eab ≡def Iab. We of course have ϕ ≡ ϕ.

A multiset (intuitively “a set allowing repetitions”) Γ is a function
from a finite set of sentences to the positive natural numbers. The
set of the sentences belonging to a multiset is its domain. Γ,∆ is
the multiset defined for the sentences in the domain of Γ or ∆, by
Γ,∆(ϕ) = Γ(ϕ) + ∆(ϕ). ϕ may be identified with the multiset defined
by ϕ(ϕ) = 1. Thus Γ, ϕ (ϕ) = Γ(ϕ) + 1. It follows, for example, that if
ϕ and ψ are distinct, then ϕ, ψ, ϕ, denotes the multiset Γ with domain
{ϕ, ψ} such that Γ(ϕ) = 2 and Γ(ψ) = 1. The multiset MX associated
with the set X is the multiset of domain X, defined by MX(ϕ) = 1,
for ϕ ∈ X. We will, for convenience, identify a set with the associated
multiset. If Γ is the multiset ϕ1, . . . , ϕn, then Γ denotes ϕ1, . . . , ϕn.

A sequent is an ordered pair 〈Γ,∆〉 of multisets denoted Γ ` ∆.
By inclusion of multisets we mean inclusion of the respective do-

mains. A sequent Γ′ ` ∆′ is included in Γ ` ∆ iff Γ′ is included in Γ,
and ∆′ is included in ∆.
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3. Proof theory

3.1. The derivation rules.

Initial sequents.

ϕ ` ϕ

Syllogistic rules.

Subalternation
Γ ` Aab,∆

sub
Γ ` Iab,∆

Conversion
Γ ` Iab,∆

conv
Γ ` Iba,∆

Perfect syllogisms

Γ1 ` Pab,∆1 Γ2 ` Abc,∆2

Γ1,Γ2 ` Pac,∆1,∆2

where P is A or I. This rule encompasses both Barbara and Darii1:

Γ1 ` Aab,∆1 Γ2 ` Abc,∆2
Barbara

Γ1,Γ2 ` Aac,∆1,∆2

Γ1 ` Iab,∆1 Γ2 ` Abc,∆2
Darii

Γ1,Γ2 ` Iac,∆1,∆2

.

1Let us record that in a medieval name of a syllogism, like Barbara, Darii,
Celarent, Ferio. . . , the three vowels indicate, in their order, whether the major
premiss (the premiss containing the predicate of the conclusion), the minor premiss
(the premiss containing the subject of the conclusion), and the conclusion is an A,
E, I or O. In order to determine the form from a mood (EIO of Ferio, say) one needs
to know the figure as well (in this case the first: i.e., the terms of the conclusion
are in the same position in their respective premisses).

In a name like Fesapo, denoting syllogisms in the fourth figure (no term of the
conclusion is in the same position as in its premiss), the consonant F means that
its validity can be reduced to that of the syllogism (Barbara, Celarent, Darii or
Ferio) in the first figure beginning with the same letter, i.e., in this case Ferio.
The consonant ‘s’ means that one can do this reduction by performing a simple
conversion (Simpliciter) on the premiss E, and the consonant ‘p’ an accidental
(Per accidens) conversion on the premiss A. The consonants ‘m’ and ‘c’ refer to a
perMutation of the order of the premisses and a reduction by Contradiction.

Let us finally note that in the second and third figure, it is only the predicate
and the subject of the conclusion, respectively, that don’t occupy the same position
in their premiss.
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Thus the syllogistic rules have the general form:

Γ1 ` ϕ,∆1 [Γ2 ` ψ,∆2]

Γ1[,Γ2] ` χ,∆1[,∆2]

Contradiction (negation) rules.

Γ ` ϕ,∆
negL

Γ, ϕ ` ∆

Γ, ϕ ` ∆
negR

Γ ` ϕ,∆

Structural rules.

Weakening

Γ ` ∆
weakL

Γ, ϕ ` ∆

Γ ` ∆
weakR

Γ ` ϕ,∆
Contraction

Γ, ϕ, ϕ ` ∆
contrL

Γ, ϕ ` ∆

Γ ` ϕ, ϕ,∆
contrR

Γ ` ϕ,∆
Cut

Γ1 ` ϕ,∆1 Γ2, ϕ ` ∆2
cut

Γ1,Γ2 ` ∆1,∆2

A derivation not using the rule of subalternation is termed an F -
derivation (“F” for “free”).

An affirmative sequent is a sequent containing affirmative sentences
only.

Let Γ+,∆+ be a multiset of affirmative sentences, and Γ−,∆− be a
multiset of negative sentences. Then the affirmative transform of the
sequent Γ+,Γ− ` ∆+,∆− is the sequent Γ+,∆− ` ∆+,Γ−.

A derivation is called affirmative if it is made up of affirmative initial
sequents and syllogistic rules only. One sees that every sequent in an
affirmative derivation is affirmative, and has only one sentence on the
right side.

A derivation is called strict if it consists in an affirmative derivation
followed by a sequence of contradiction rules.

3.2. Normalization of derivations.

We show now that the derivations can be brought into a very strong
canonical form. First, let us note that the weakening rules can be put
at the bottom of the derivations:
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Lemma 1. Every derivation [or F -derivation] of a sequent Γ ` ∆ can
be transformed into a derivation [or F -derivation] of a sequent Γ′ ` ∆′,
not using the weakening rules, such that Γ ` ∆ results from Γ′ ` ∆′ by
using weakenings only.

Proof
This almost trivial fact is proved by induction on the derivation.

Suppose for example that the derivation ends in a syllogistic rule:

Γ1 ` ϕ1,∆1 [Γ2 ` ϕ2,∆2]

Γ1[,Γ2] ` ϕ,∆1[,∆2]

The result is clear, if the inductive hypothesis provides a required
derivation of Γ′

1 ` ∆′
1 or of Γ′

2 ` ∆′
2.

If there are required derivations of Γ′
1 ` ϕ1,∆

′
1 [and of Γ′

2 ` ϕ2,∆
′
2],

then by the same rule there is a required derivation of Γ′
1[,Γ

′
2] `

ϕ,∆′
1[,∆

′
2].

The other cases are handled similarly, and the weakening rules are
of course skipped.

The next lemma will entail the analogue result for contradiction
rules:

Lemma 2. A derivation remains a derivation if each sequent in it is
replaced by its affirmative transform, and if the contradiction rules are
skipped.

Proof
Observing that the affirmative transform of the premiss of a contradic-
tion rule is the same sequent as the affirmative transform of its con-
clusion, the inductive proof follows by simple inspection of the rules.

Now we show how, under some conditions, to push the contractions
downwards:

Lemma 3. Every derivation [or F -derivation] without weakenings or
contradictions can be transformed into a derivation [or F -derivation]
of a sequent Γ′ ` ϕ, not using weakenings, contradictions nor contrac-
tions, such that the initial conclusion results from Γ′ ` ϕ by applying
left contractions only.

Proof
The only non trivial case of the inductive proof is the case where the
derivation ends with a cut rule:

Γ1 ` ψ Γ2, ψ ` ϕ

Γ1,Γ2 ` ϕ
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The inductive hypothesis provides derivations of Γ∗
1 ` ψ and Γ∗

2, ψ,
. . . , ψ ` ϕ. Applying repeatedly the cut rule, we obtain a derivation of
Γ∗

2,Γ
∗
1, . . . ,Γ

∗
1 ` ϕ, that can be (left) contracted in Γ2,Γ1 ` ϕ.

A preliminary normal form is provided by

Lemma 4. Every derivation [or F -derivation] can be transformed in a
derivation [or F -derivation] of the same sequent, consisting of a strict
derivation [or strict F -derivation], followed by a sequence of contrac-
tions and a sequence of weakenings.

Proof
We can suppose by lemmas 1, 2 and 3, that the derivation is made up
of a part produced by initial sequents, syllogistic rules and cut rules,
followed by contraction, contradiction and weakening rules.

It will thus suffice to show that one can commute the contractions
and the contradictions. The most complex case is illustrated as follows:

···
ϕ1, . . . , ϕ1, . . . , ϕk, . . . , ϕk, . . . , ϕn, . . . , ϕn ` ϕ
==================================== left contractions

ϕ1, . . . , ϕk, . . . , ϕn ` ϕ
====================== contradictions
ϕ1, . . . , ϕk, ϕ ` ϕk+1, . . . , ϕn

becomes
···

ϕ1, . . . , ϕ1, . . . , ϕk, . . . , ϕk, . . . , ϕn, . . . , ϕn ` ϕ
================================================ contradictions
ϕ1, . . . , ϕ1, . . . , ϕk, . . . , ϕk, ϕ ` ϕk+1, . . . , ϕk+1, . . . , ϕn, . . . , ϕn
================================================ contractions

ϕ1, . . . , ϕk, ϕ ` ϕk+1, . . . , ϕn

We end this sequence of lemmas with a cut elimination result:

Lemma 5. Every affirmative derivation [or F -derivation] can be trans-
formed into a cut-free affirmative derivation [or F -derivation] of the
same sequent.

Proof
The main induction is on the number of cuts. We select an uppermost
cut:

Σ

Γ1 ` ϕ

∆

Γ2, ϕ ` ψ
cut

Γ1,Γ2 ` ψ
i.e., Σ and ∆ are cut-free. We show how to remove this cut by a
secondary induction on ∆.



36 MARCEL CRABBÉ

∆

Γ2, ϕ ` ψ
is the initial sequent ϕ ` ϕ.

Σ

Γ1 ` ϕ
is a required

derivation.

∆

Γ2, ϕ ` ψ
ends in a one premiss rule:

∆′

Γ2, ϕ ` ψ′

Γ2, ϕ ` ψ

. By the in-

ductive hypothesis, we have a cut-free affirmative derivation of
Γ1,Γ2 ` ψ′, to which the same rule can be applied.

∆

Γ2, ϕ ` ψ
ends in a Barbara or Darii rule:

∆′

Γ′
2, ϕ ` ψ′

∆′′

Γ′′
2 ` ψ′′

Γ2, ϕ ` ψ

. By the inductive hypothesis, we have a

cut-free affirmative derivation of Γ1,Γ
′
2 ` ψ′, to which the same

rule applies with the same second premiss. And similarly if ϕ
is in the second premiss.

Putting lemmas 4 and 5 together, we obtain our normal form result:

Proposition 6. Every derivation [or F -derivation] can be transformed
into a cut-free derivation of the same sequent, composed of a strict
derivation [or strict F -derivation] followed by a sequence of contrac-
tions and a sequence of weakenings.

Remarks.

(1) This normal form divides a derivation into two parts: a strict
one, representing a traditional proof; and a structural one com-
posed of contractions and weakenings, usually not allowed in
the traditional frame.

(2) It is not difficult to see that a sequent Γ′ ` ∆′ is included in Γ `
∆ iff Γ ` ∆ can be obtained from Γ′ ` ∆′ by using a sequence
of contraction rules, followed by a sequence of weakening rules.

4. Traditional semantics: the notion of correct
syllogism

Apart from the informal mode of speech, we will avoid the traditional
usual notions of form and of instantiation, by distinguishing constants
and terms. A term is a set of occurrences of a constant. An element of
a term will be called an occurrence of this term. Normally no confusion
will arise when a term is denoted by the same letter as the constant of
which it contains the occurrences.
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Definition of quantity.

An occurrence of a term in a sentence is universal iff
the sentence is universal and this occurrence is the first
one (the subject position), or the sentence is negative
and the occurrence is the second one (the predicate po-
sition) i.e., a is universal in Aab, Eab, Eba, and Oba, but
not in Aba, Iab, Iba, or Oab. This corresponds to the
fact that the term would appear in a negative part of a
formula, when the sentence is canonically translated in
the predicate calculus.

An occurrence is particular iff it is not universal.
Observe that this quantity of the indicated occurrence

of a and b in ϕ(a, b) is universal iff it is particular in

ϕ(a, b).
A term is taken universally in Γ iff one of its occur-

rences is universal in a sentence of Γ. A term is taken
universally in Γ ` ∆ iff it is taken universally in Γ,∆,
i.e., iff it is taken universally in Γ, or particularly in ∆.
A term is taken particularly iff it is not taken universally.

Definition of syllogism.

A cycle of the constants c1, . . . , cn (n > 1) is a multiset of
the form ϕ1(c1, c2), . . ., ϕi(ci, ci+1), . . ., ϕn(cn, c1). Thus
a cycle contains at least two sentences. The terms of
the cycle are the indicated occurrences of the constants
ci in ϕi−1(ci−1, ci) and ϕi(ci, ci+1), in case 1 < i ≤ n,
and the two indicated occurrences of c1 in ϕ1(c1, c2) and
ϕn(cn, c1). Thus a cycle of the constants c1, . . . , cn has n
terms, each having exactly two occurrences in the cycle.

A syllogism is a sequent Γ ` ∆ such that Γ,∆ is a
cycle.

A syllogism Γ ` ∆ is correct [or freely correct] iff each
term is taken universally at least [or exactly] once in
Γ ` ∆, and exactly one term in predicate position is
taken universally in Γ ` ∆.

Clearly, a syllogism Γ,Γ′ ` ∆,∆′ is correct [or freely

correct] iff Γ,∆
′ ` ∆,Γ

′
is correct [or freely correct].
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4.1. Special cases: antilogism and reasoning.

1. An antilogism2 is a syllogism of the form Γ `. It is clear that an
antilogism Γ ` in the constants c1, . . . , cn is correct [or freely correct]
iff Γ contains exactly one negative sentence and at least one [or exactly
one] occurrence of each ci (1 ≤ i ≤ n) is universal.

We also have that a syllogism Γ ` ∆ is correct [or freely correct] iff
the antilogism Γ,∆ ` is correct [or freely correct].

2. A syllogistic reasoning is a syllogism of the form Γ ` ϕ. The
sentences in Γ are the premisses and ϕ is the conclusion. This is
more or less the traditional polysyllogism; the traditional syllogism is
a syllogistic reasoning with two premisses; more exactly it is one of the
form ψ, χ ` ϕ.

4.2. The correct affirmative syllogisms.

We will here determine the correct syllogisms, by determining the cor-
rect affirmative syllogisms, to which all other correct syllogisms reduce
by affirmative transformation.

The former definition of the notion of syllogistic reasoning can be
illuminated by introducing the notion of a chain.

A chain of the constants c1, . . . , cn is a multiset of sentences of the
form ϕ1(c1, c2), . . . , ϕi(ci, ci+1), . . . , ϕn−1(cn−1, cn). Such a chain is said
to connect the extremes c1 and cn through the middle terms ci (1 <
i < n). A chain is non-empty.

Thus we obtain a chain from a cycle by removing one sentence; and
so, a syllogistic reasoning is a sequent Γ ` ϕab such that Γ is a chain
connecting a and b.

If Γ ` ϕ is a correct syllogistic reasoning, then there is exactly one
negative sentence in Γ, ϕ; that is, either Γ ` ϕ is affirmative, or ϕ is
negative and there is exactly one negative sentence in Γ. Therefore,
unfolding the above definitions of correctness, a syllogistic reasoning
is correct [or freely correct] iff the following traditional conditions are
satisfied:
− middle term rule: each middle term is taken universally at least [or
exactly] once (see [3] for a connection with the interpolation theorem),
− latius hos: the quantity of a term in the conclusion is not greater3

2This notion was due to Ladd-Franklin, and sometimes used to characterize the
valid syllogisms in an abstract way (e.g., in [7]). We will use the notion of affirmative
syllogism for the same purpose.

3The universal quantity is greater than the particular one.
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than [or is the same as] in its premiss, i.e., if a term is universal in ϕ it
is universal in its premiss [or a term is universal in ϕ iff it is universal
in its premiss],
− there is at most one negative premiss,
− if one of the premisses is negative, then the conclusion is negative,
− if all the premisses are affirmative, then the conclusion is affirmative.

It is by now clear that an affirmative correct [or freely correct] syl-
logism is an affirmative correct [or freely correct] syllogistic reasoning.
Therefore a syllogism is correct [or freely correct] iff its affirmative
transform is a correct [or freely correct] syllogistic reasoning.

The next definition captures the notion of a set of affirmative pre-
misses allowing a syllogistic conclusion. An affirmative chain is correct
[or freely correct] iff each middle term is universal at least [or exactly]
once, that is iff each middle term occurs at least [or exactly] once as
subject of an affirmative universal sentence. Thus the affirmative syl-
logism ϕ1(a, c1), . . . , ϕn−1(cn−1, b) ` Pab is correct [or freely correct]
iff ϕ1(a, c1), . . . , ϕn−1(cn−1, b) is a correct [or freely correct] chain and
ϕ1(a, c1) is Aac1 if [or iff] Pab is Aab.

In order to determine the correct affirmative syllogisms, we begin by
determining the correct chains of affirmative sentences (the “affirmative
chains”).

A Barbara-chain is a chain of the form Aac2,Ac2c3, . . . ,Acn−1b. It
may be denoted by Aa b. It will be useful to employ the notation Aa b
to denote a chain Aa b if a 6= b, and either a chain Aa b or the empty
(multi)set, if a = b.

Let Γ = ϕ1(a, c2), . . . , ϕn−1(cn−1, b) be a correct [or freely correct]
affirmative chain.

If a is universal in ϕ1(a, c2) or b universal in ϕn−1(cn−1, b), then Γ is
a Barbara-chain

Aac2, . . . ,Acn−1b or Ac2a, . . . ,Abcn−1.

If a is particular in ϕ1(a, c2), and b particular in ϕn−1(cn−1, b), then
we have two subcases.

First, if Γ contains a particular sentence, Ici−1ci say, then Γ is

Ac2a, . . . ,Aci−1ci−2, Ici−1ci,Acici+1, . . . ,Acn−1b,

which we call a Darii-chain, i.e., one of the general form

Ac a, Icd,Ad b.

Second, if Γ contains no particular sentence, then the chain has the
form:

Ac2a, . . . ,Acici−1,Acici+1, . . . ,Acn−1b,
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which we call a Darapti-chain, i.e., one of the general form

Ac a,Ac b,

and it is not freely correct.
Having determined the correct affirmative chains (those multisets

of affirmative sentences enabling a syllogistic conclusion), we are in a
position to describe the correct and freely correct affirmative syllogisms:

Theorem 7. An affirmative syllogism is freely correct iff it has one of
the following forms:

Aa b ` Aab (general Barbara);
Ac a, Icd,Ad b ` Iab or Ac b, Icd,Ad a ` Iab (general Darii).

An affirmative syllogism is correct iff it is freely correct, or has one
of the following forms:

Aa b ` Iab or Ab a ` Iab (general Barbari);
Ac a,Ac b ` Iab (general Darapti).

We recover the eight correct, and the five freely correct, traditional
affirmative syllogisms as particular cases:

Barbara: Aac,Acb ` Aab;
Barbari and Bramantip: Aac,Acb ` Iab and Abc,Aca ` Iab;
Darapti: Aca,Acb ` Iab;
Darii, Dimaris, Disamis, and Datisi: Iac,Acb ` Iab; Ibc,Aca `
Iab; Aca, Icb ` Iab and Acb, Ica ` Iab.

As further particular cases, we obtain the correct affirmative syllo-
gisms without middle terms, known as immediate inferences: Aab `
Aab (general Barbara); Aab ` Iab and Aba ` Iab (general Barbari);
Iab ` Iab and Iba ` Iab (general Darii), among which the syllogistic
forms Aab ` Iab and Aba ` Iab are not freely correct.

We end this section by indicating how to make explicit the existential
import:

Proposition 8.
1. If Γ ` ∆ is a correct syllogism, then, for some c, Γ, Icc ` ∆ is a
freely correct syllogism.
2. If Γ, Icc ` ∆ is a freely correct syllogism and Occ is not in Γ and Icc
is not in ∆, then Γ ` ∆ is a correct syllogism.

Proof
1. If Γ ` ∆ is correct but not freely correct, then the affirmative

transform of Γ ` ∆ is a general Darapti Ac a,Ac b ` Iab in which only
the term c is taken twice universally. The conclusion follows from the
fact that Ac a,Ac b, Icc ` Iab is a general Darii, which is freely correct.
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2. If Γ, Icc ` ∆ is a freely correct syllogism, then its affirmative
transform is a general Darii Ac a, Icc,Ac b ` Iab, i.e., it has one of
the forms Ac a, Icc,Ac b ` Iab, or Ac a, Icc ` Iac, or Icc,Ac b ` Icb, or
Icc ` Icc. The last possibility is excluded by hypothesis. Therefore, the
affirmative transform of Γ ` ∆ is the general Darapti Ac a,Ac b ` Iab,
or the general Barbari Ac a ` Iac or Ac b ` Ibc. Whence Γ ` ∆ is
correct.

4.3. Traditional completeness.

Proposition 9.
1. Every affirmative correct [or freely correct] syllogism is affirmatively
derivable [or F -derivable] without cuts.
2. Every correct [or freely correct] syllogism is strictly derivable [or
F -derivable] without cuts.

Proof
2. follows from 1. and the fact that if a syllogism is correct [or freely
correct], then so is its affirmative transform. In accordance with theo-
rem 7, the following examples will suffice to indicate how to carry out
the proof of 1.

General Barbara:

Aac2 ` Aac2 Ac2c3 ` Ac2c3
Barbara

Aac2,Ac2c3 ` Aac3 Ac3c4 ` Ac3c4
Barbara

Aac2,Ac2c3,Ac3c4 ` Aac4···
Aac2, . . . ,Acn−1b ` Aab

General Darii:

Icd ` Icd
conv

Icd ` Idc

General Barbara···
Ac a ` Aca

Darii
Ac a, Icd ` Ida

conv
Ac a, Icd ` Iad

General Barbara···
Ad b ` Adb

Darii
Ac a, Icd,Ad b ` Iab



42 MARCEL CRABBÉ

General Darapti:

General Barbara···
Ac a ` Aca

sub
Ac a ` Ica

conv
Ac a ` Iac

General Barbara···
Ac b ` Acb

Darii
Ac a,Ac b ` Iab

Proposition 10.
1. An affirmatively derivable [or F -derivable] sequent is an affirmative
correct [or freely correct] syllogistic reasoning.
2. A strictly derivable [or F -derivable] sequent is a correct [or freely
correct] syllogism.

Proof
1. By induction on the length of the derivations. We can use the
general definition of correctness, or theorem 7. Here, we mix the two
methods.
ϕ ` ϕ is a freely correct affirmative syllogism, if ϕ is affirmative.
Subalternation. If Γ ` Aab is a correct syllogism, then it is a general

Barbara. Hence Γ ` Iab is a general Barbari.
Conversion. If Γ ` Iab is a correct [or freely correct] syllogism, then

it is a general Darii or Darapti [or a general Darii]; and Γ ` Iba is of
the same kind.

Perfect syllogisms. If Γ1 ` Pab and Γ2 ` Abc are correct [or freely
correct] syllogisms, then so is Γ1,Γ2 ` Pac, because the mentioned
occurrence of the term b is universal in Γ2 [and particular in Γ1]; and
those of a, c keep their quantity in Pac.

Cut. a [or b] has not the same quantity in Γ∗
1 ` Pab and in Γ∗

2,Pab `
ψ. Thus one can show that if Γ∗

1 ` Pab and Γ∗
2,Pab ` ψ are correct

[or freely correct] syllogisms, then so is Γ∗
2,Γ

∗
1 ` ψ. But we can also

dispense with this step and use lemma 5 instead.
2. follows from 1. and the fact that a syllogism is correct if its

affirmative transform is correct.

Proposition 11.
1. A sequent is strictly derivable [or F -derivable] without cuts iff it is
a correct [or freely correct] syllogism.
2. ϕ1, . . . , ϕn ` ψ is a correct [or freely correct] syllogistic reason-
ing iff it is affirmatively derivable [or F -derivable], or, for some i,
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ϕ1, . . . , ϕi−1, ψ, ϕi+1, . . . , ϕn ` ϕi is affirmatively derivable [or
F -derivable].

Proof
1. The ‘if’ part is covered by proposition 9.2; and the ‘only if’ part is
a consequence of proposition 10.2.

2. The ‘if’ part is a particular case of 1. For the ‘only if’ part, we
assume that ϕ1, . . . , ϕn ` ψ is a correct syllogism. Then it is strictly
derivable, by 1. Therefore it is either affirmatively derivable, or it
follows by the contradiction rules from an affirmative syllogism, which
can only be of the form ϕ1, . . . , ϕi−1, ψ, ϕi+1, . . . , ϕn ` ϕi.

Corollary 12 (Barbara, Celarent. . . ).
There are exactly 15 forms of freely correct traditional syllogistic rea-
soning; and exactly 24 forms of correct traditional syllogistic reasoning.

Proof
Indeed, each of the affirmative forms of correct traditional syllogisms
give rise to two new forms.

Here are the details and the names indexed with the figure.
From Barbara1: Aac,Acb ` Aab, we obtain Aac,Oab ` Ocb (Bocardo3)

and Oab,Acb ` Oac (Baroco2).
From the (not freely correct) Barbari1 and Bramantip4: Aac,Acb `

Iab, and Abc,Aca ` Iab, we obtain Aac, Eab ` Ocb (Felapton3), Eab,Acb `
Oac (Camestrop2); Abc, Eab ` Oca (Fesapo4) and Eab,Aca ` Obc
(Camenop4).

From the (not freely correct) Darapti3: Aca,Acb ` Iab, we obtain
Aca, Eab ` Ocb (Celaront1) and Eab,Acb ` Oca (Cesaro2).

Finally, from Darii1, Dimaris4, Disamis3, and Datisi3: Iac,Acb ` Iab;
Ibc,Aca ` Iab; Aca, Icb ` Iab and Acb, Ica ` Iab, we obtain: Iac, Eab ` Ocb
(Ferison3), Eab,Acb ` Eac (Camestres2); Ibc, Eab ` Oca (Fresison4),
Eab,Aca ` Ebc (Camenes4); Aca, Eab ` Ecb (Celarent1), Eab, Icb ` Oca
(Festino2); Acb, Eab ` Eca (Cesare2) and Eab, Ica ` Ocb (Ferio1).

Theorem 13. A sequent is derivable [or F -derivable] iff it includes a
correct [or freely correct] syllogism.

Proof
The ‘if’ part follows from proposition 11.1. The ‘only if’ part is a
consequence of propositions 6 (and its second remark) and 11.2.

Examples of non-derivable syllogistic sequents obtained by weakening:
Aab,Aab ` Aab; Iab,Aab ` Iba; Eab, Ibc ` Eba.

Examples showing the role of the contraction rules:
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– with the existential presupposition, implied by the subalternation
rule:

Aca ` Aca
sub

Aca ` Ica
conv

Aca ` Iac Aca ` Aca
Barbara

Aca,Aca ` Iaa
contrL

Aca ` Iaa

– and without existential import:

Icc ` Icc Aca ` Aca
Darii

Icc,Aca ` Ica
conv

Icc,Aca ` Iac Aca ` Aca
Darii

Icc,Aca,Aca ` Iaa
contrL

Icc,Aca ` Iaa

5. Modern semantics

5.1. General interpretation.

A free Aristotelian algebra is a triple 〈A,≺,_〉, where A is a non empty
set, ≺ is a transitive relation (included in A×A), and _ is a symmetric
relation (included in A×A), such that, for all a, b, c ∈ A, if a _ b and
b ≺ c then a _ c. An Aristotelian algebra is a free Aristotelian algebra
in which ≺ is included in _.
a ≺ b, a _ b may be read b extends a, and a is compatible with b,

respectively.

Examples.

Any non-empty collection of non-empty sets with the
subset relation and non-empty overlap relation is an
Aristotelian algebra; if an empty set is allowed, it is
a free Aristotelian algebra.

Any Boolean algebra with the appropriate relations (a ·
b = a, a · b 6= 0) is a free Aristotelian algebra.

If ≺ is transitive, we may define a free Aristotelian alge-
bra by letting a _ b iff c ≺ a and c ≺ b, for some c. In
particular, a forcing notion, with its usual compatibility
relation, is an Aristotelian algebra.
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Let A be an Aristotelian algebra 〈A,≺,_〉, and let there be a func-
tion from the terms of a language to A, which we denote also by A.
We define the truth relation in the natural way as follows: A |= Aab iff
A(a) ≺ A(b); A |= Iab iff A(a) _ A(b); A |= Eab iff not A(a) _ A(b);
A |= Oab iff not A(a) ≺ A(b). A |= ϕ is read “ϕ is true in A”
Γ ` ∆ is valid [or freely valid] iff one of the sentences in ∆ is true in
all Aristotelian algebras [or free Aristotelian algebras] in which all the
sentences in Γ are true.

5.1.1. Generating Aristotelian algebras. Let A = 〈A,α, ι〉 be a struc-
ture with the binary relations α and ι.

We define the relations ≺, �, _ and _A as follows4. ≺ is the
transitive closure of α: a ≺ b iff aαb, or, for some c1,. . . ,cn (n ≥ 1),
aαc1, . . . , ciαci+1, . . . , cnαb. � is the transitive and reflexive closure of
α: a � b iff a ≺ b or a = b. a _ b iff c � a and d � b, for some c, d ∈ A
such that cιd or dιc. a _A b iff a _ b, or there is a c in A such that
c � a and c ≺ b, or c ≺ a and c � b.
〈A,≺,_〉 is a free Aristotelian algebra such that α ⊆≺ and ι ⊆_;

and 〈A,≺,_A〉 is an Aristotelian algebra such that α ⊆≺ and ι ⊆_A.
In fact they are the smallest such algebras.

Theorem 14 (Completeness).
1. A sequent is freely valid iff it is F -derivable.
2. A sequent is valid iff it is derivable.

Proof
Observe first that a sequent is derivable [or F -derivable] iff its af-

firmative transform is derivable [or F -derivable]; and, that a sequent
is valid [or freely valid] iff its affirmative transform is valid [or freely
valid]. It will therefore be sufficient to prove the theorem for affirmative
sequents.

Since the ‘if’ parts are straightforward verification, we limit ourselves
to the ‘only if’ directions.

1. Suppose that the affirmative Γ ` ∆ is not F -derivable. Then, by
theorem 13, it doesn’t include an affirmative freely correct syllogism.

Let G be 〈G,α, ι〉, where G is the set of constants occurring in Γ,∆,
and aαb iff Aab is in Γ, aιb iff Iab is in Γ. Let F be the free Aristotelian
algebra 〈G,≺,_〉 generated by G, and let F(a) = a, for the terms in
G.

Clearly, F |= ϕ, for every ϕ in Γ. It remains to be shown that
F 6|= ϕ, for the sentences ϕ in ∆.

4It will not be necessary to use a more pedantic writing of the sort ≺A, _A.
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If Aab is in ∆, and F |= Aab, i.e., a ≺ b, then, by definition of ≺,
Γ ` ∆ would include a freely correct syllogism of the form Aa b ` Aab.
Hence F 6|= Aab.

If Iab is in ∆, and F |= Iab, i.e., a _ b, then, by definition of _, Γ `
∆ would include a freely correct syllogism of the form Ac a, Icd,Ad b `
Iab, or Ac a, Idc,Ad b ` Iab. Hence F 6|= Iab.

Therefore, as every sentence in Γ is true in F , and every sentence in
∆ is false in F , the sequent is not freely valid.

2. Suppose that Γ ` ∆ is not derivable. Then, by theorem 13, it
doesn’t include an affirmative correct syllogism. We define G as in the
previous part, and we let A be the Aristotelian algebra 〈G,≺,_A〉
generated by G, with A(a) = a, for the terms in G.

The proof that A is a model of Γ,∆ is the same as in the first part,
with the extra case where a _A b because Γ includes a multiset of the
form Ac a,Ac b, or Ac a,Ac b, entailing that Γ ` ∆ includes a correct
syllogism of the form Ac a,Ac b ` Iab, or Ac a,Ac b ` Iab.

5.2. Class interpretations.

5.2.1. Aristotelian families. A free Aristotelian family is a non-empty
collection of sets with the subset relation and non-empty overlap re-
lation; an Aristotelian family is a free Aristotelian family not contain-
ing the empty set. As remarked above, Aristotelian families [or free
Aristotelian families] are Aristotelian algebras [or free Aristotelian al-
gebras].

Γ ` ∆ is valid for Aristotelian families [or free Aristotelian families]
iff one of the sentences in ∆ is true in all Aristotelian families [or free
Aristotelian families] in which all the sentences in Γ are true.

Examples.

The following invalid sequents are valid for free Aris-
totelian families: ` Aaa; Iab ` Iaa. Oab ` Iaa is valid for
free Aristotelian families, but not for free Aristotelian
algebras. Iaa is true in all Aristotelian families, but not
in all free Aristotelian families.

5.2.2. Reflexive algebras. Let A = 〈A,≺,_〉 be a free Aristotelian al-
gebra. Let’s call a a non-empty element of A iff, for some b, a _ b or
not a ≺ b. A is reflexive iff ≺ is reflexive and the non-empty elements
are _-reflexive; that is a ≺ a, for every a ∈ A, and a _ a, if a is a
non-empty element of A.

Thus an Aristotelian algebra 〈A,≺,_〉 is reflexive iff ≺ is reflexive.
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Γ ` ∆ is valid for reflexive Aristotelian algebras [or free reflexive
Aristotelian algebras] iff one of the sentences in ∆ is true in all reflexive
Aristotelian algebras [or free reflexive Aristotelian algebras] in which
all the sentences in Γ are true.

We will now state and prove a representation theorem that relates
families and reflexive algebras. It will clearly evoke Stone’s represen-
tation theorem for Boolean algebras. Similar results appear in [1], [2]
and [6], and a somewhat different one, but to the same effect, is found
in [7].

A filter on a free Aristotelian algebra 〈A,≺,_〉 is a set closed under
extension and whose elements are pairwise compatible : X is a filter
iff for all a, b ∈ A, such that a ≺ b and a ∈ X, we have b ∈ X, and if
a, b ∈ X then a _ b.
F (a) is the set (class) of filters containing a.

Proposition 15 (representation). If 〈A,≺,_〉 is a reflexive free Aris-
totelian algebra, then:

a ≺ b iff F (a) ⊆ F (b);

a _ b iff F (a) ∩ F (b) 6= ∅.

Proof
If a ≺ b and X ∈ F (a), then a ∈ X, and, because X is a filter,

b ∈ X. Therefore X ∈ F (b).
Let F (a) ⊆ F (b), and suppose a 6≺ b. Then a is not empty, and

a _ a. Therefore { c | a ≺ c } is a filter containing a. Hence, { c | a ≺
c } ∈ F (b), which implies a ≺ b. We conclude that a ≺ b.

If a _ b, then a, b are not empty. Hence, { d | a ≺ d or b ≺ d } is a
filter belonging to both F (a) and F (b).

Let F (a) ∩ F (b) 6= ∅ and X be a filter in F (a) and F (b). Then,
a, b ∈ X and a _ b.

Though this function F is not necessarily an isomorphism, the propo-
sition 15 suffices to characterize the Aristotelian families as special
Aristotelian algebras and situates the class interpretations among the
general interpretations. We express this as follows:

Corollary 16. A sequent is valid for Aristotelian families [or free Aris-
totelian families] iff it is valid for reflexive Aristotelian algebras [or
reflexive free Aristotelian algebras].

Proof
Every Aristotelian family [or free Aristotelian family] is a reflexive

Aristotelian algebra [or reflexive free Aristotelian algebra].
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Conversely, if 〈A,≺,_〉 is a reflexive free Aristotelian algebra, then
the set of F (a), for a in A, with the inclusion and non-empty overlap
relations is a free Aristotelian family; and if 〈A,≺,_〉 is a reflexive
Aristotelian algebra, then it is an Aristotelian family, because in this
case F (a) is non-empty, for every a: { b | a ≺ b } is a filter containing
a.

5.2.3. Generating reflexive algebras. Let, as above, A = 〈A,α, ι〉 be a
structure with the two binary relations α and ι.
_FC and _C are defined as follows. a _FC b iff a _ b, or c � a and

c � b, for some c ∈ A such that, for some z ∈ A, zιc or cιz or c 6� z.
a _C b iff a _ b or, for some c ∈ A, c � a and c � b.

〈A,�,_C〉 is a reflexive Aristotelian algebra such that α ⊆� and
ι ⊆_C ; and 〈A,�,_FC〉 is a reflexive free Aristotelian algebra such
that α ⊆� and ι ⊆_FC . They are even the smallest such ones.

Theorem 17.
1. A sequent is valid for free Aristotelian families iff it is F -derivable,
or its affirmative transform includes a sequent of one of the forms
` Aaa, or Icd [or Idc],Ac a,Ac b ` Iab, or Ac a,Ac b ` Iab,Acd
2. A sequent is valid for Aristotelian families iff it is derivable, or its
affirmative transform includes a sequent of the form ` Aaa or ` Iaa.

Proof
As in the proof of theorem 14, we can limit ourselves to the case of
affirmative sequents.

The ‘if’ parts are simple exercises. For the ‘only if’ parts, we will
make use of corollary 16, and thus be confined to reflexive free algebras
or reflexive algebras.

1. We suppose that Γ ` ∆ is not F -derivable and does not in-
clude a sequent of the form ` Aaa, or Icd [or Idc],Ac a,Ac b ` Iab, or
Ac a,Ac b ` Iab,Acd. It follows, by theorem 13, that it does not include
an affirmative freely correct syllogism either. We show that Γ ` ∆ is
not valid for reflexive free Aristotelian algebras.

Let G be the set of constants appearing in Γ,∆. Let aαb iff Aab ∈ Γ,
or some Aa c,Aa d ` Icd is included in Γ ` ∆. Let further aιb iff
Iab ∈ Γ. Finally, let FC be 〈G,�,_FC〉, the reflexive free Aristotelian
algebra generated by 〈G,α, ι〉, with FC(a) = a, for a ∈ G.

We note that FC |= ϕ, for ϕ in Γ. Before we proceed to show that
FC 6|= ϕ, for ϕ in ∆, we observe that:

(∗) if a � b, then some Aa b is included in Γ, or some Aa c, Aa d `
Icd is included in Γ ` ∆.
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Indeed, if a � b, then, a = b, or, for some x1, . . . , xn, aαx1, x1αx2, . . . ,
xnαb. Hence, if a 6= b and Aax1,Ax1x2, . . . ,Axnb are not all in Γ, then,
for some y ∈ {a, x1, . . . , xn, b}, some Aa y is included in Γ, and some
Ay c,Ay d ` Icd is included in Γ ` ∆. Thus, some Aa c,Aa d ` Icd is
included in Γ ` ∆.

Now let us suppose that Aab is in ∆, and that FC |= Aab, i.e., a � b.
Then, by (∗), some Aa b is included in Γ, or some Aa c,Aa d ` Icd
is included in Γ ` ∆. The second possibility contradicts one of the
hypotheses, because Aab is in ∆. In the first possibility, since Aaa /∈ ∆,
some Aa b is included in Γ, and hence some freely correct syllogism
Aa b ` Aab would be included Γ ` ∆.

Next, let us suppose that Iab is in ∆, and that FC |= Iab, i.e.,
a _FC b. We consider the three possibilities stemming from the defi-
nition of _FC :

• a _ b, i.e., there are c, d be such that, Icd [or Idc] is in Γ, and
c � a, d � b. Then, by (∗), some Ac a,Ad b is included in Γ, or
some Ac x,Ac y ` Ixy or Ad x,Ad y ` Ixy is included in Γ ` ∆.
In the first case, Γ ` ∆ would include the freely correct syllo-
gism Icd[or Idc],Ac a,Ad b ` Iab. In the second case, Γ ` ∆
would include Icd,Ac x,Ac y ` Ixy, which is impossible by hy-
pothesis. The last case is similar.

• There is a c such that some Icd [or Idc] is in Γ, and c � a, c � b.
This is impossible, by (∗) and by hypothesis, since we can have
neither Icd [or Idc], Ac a,Ac b ` Iab, nor Icd [or Idc], Ac x,Ac y `
Ixy included in Γ ` ∆.

• There is a c such that, for some d, c 6� d and c � a, c � b. Then,
by definition of α, no Ac x,Ac y ` Ixy is included in Γ ` ∆.
Therefore, by (∗), some Ac a,Ac b is included in Γ. But this is
plainly impossible, as Iab is in ∆.

2. We suppose that the affirmative sequent Γ ` ∆ is not derivable,
and that neither Aaa nor Iaa are in ∆. By theorem 13, it does not
include an affirmative correct syllogism. We will show that Γ ` ∆ is
not valid for reflexive Aristotelian algebras.

Define aαb and aιb as Aab ∈ Γ and Iab ∈ Γ, respectively. And let C be
the reflexive algebra 〈G,�,_C〉, generated by 〈G,α, ι〉, with C(a) = a,
for a in G (the set of constants occurring in Γ,∆).

As we obviously have C |= ϕ, for all ϕ in Γ, we show that C 6|= ϕ, for
all ϕ in ∆.

Suppose that Aab is in ∆, and that C |= Aab, i.e., a � b. We
have a 6= b, because Aaa is not in ∆. Hence some correct syllogism
Aa b ` Aab is included in the sequent Γ ` ∆.
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Suppose that Iab is in ∆, and that C |= Iab, i.e., a _C b. a 6= b, since
Iaa is not in ∆. Therefore, some correct syllogism of the form Icd [or
Idc],Ac a,Ad b ` Iab or Ac a,Ac b ` Iab [or Iba] would be included in
Γ ` ∆.

5.2.4. Proof theory for class interpretations. The class system C is ob-
tained by adding ` Aaa as initial sequents to the former system of
derivations. The free class system FC is C with the following rules
added, but the subalternation rule removed:

Γ, Iaa ` ∆

Γ ` Aab,∆

Γ, Iaa ` ∆

Γ, Iab ` ∆

Every sequent derivable in FC is derivable in C: ` Iaa is derivable
in C; therefore Γ ` ∆ results from Γ, Iaa ` ∆, by the cut rule; and
Γ, Iab ` ∆ and Γ ` Aab,∆ from Γ ` ∆, by weakening.

Since Icc,Ac a,Ac b ` Iab is F -derivable by proposition 9, Icd,Ac a,
Ac b ` Iab and Ac a,Ac b ` Iab,Acd are derivable in FC; and Idc, Ac a,
Ac b ` Iab derives from Idc ` Icd and Icd,Ac a,Ac b ` Iab by the cut
rule.

The completeness of these systems relative to validity for Aristotelian
families can now be easily deduced from theorem 17:

If the affirmative sequent Γ ` ∆ is not FC-derivable, then Γ `
∆ is not F -derivable, and neither Icd [or Idc],Ac a,Ac b ` Iab, nor
Ac a,Ac b ` Iab,Acd is included in Γ ` ∆. Therefore Γ ` ∆ is not
valid for free Aristotelian families.

If the affirmative sequent Γ ` ∆ is not C-derivable, then Γ ` ∆ is
not derivable, and neither Aaa nor Iaa is in ∆. Therefore Γ ` ∆ is not
valid for Aristotelian families.

6. Decidability

The systems are all decidable, by the theorems 13 and 7: to see
whether Γ ` ∆ is correct [or freely correct], one checks whether its af-
firmative transform includes a general Barbara or Darii [or Barbari or
Darapti]. Moreover if we embed the syllogistic theories within proposi-
tional logic in the manner of [4], we deduce the known decidability for
these systems: to see whether a sentence is true in all Aristotelian alge-
bras [or free Aristotelian algebras], one writes it down as a conjunction
of disjunctions, so that the problem reduces to the correctness [or free
correctness] of a finite set of sequents in our original language.
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If we embed syllogistic theories within predicate logic, by taking
appropriate subsets of the most inclusive system, generated by the fol-
lowing non-logical axioms: ∀x∀y (Axy ↔ ¬Oxy), ∀x∀y (Ixy ↔ ¬Exy),
∀x∀y∀z (Axy → (Ayz → Axz)), ∀x∀y∀z (Ixy → (Ayz → Ixz)),
∀x∀y (Axy → Ixy), ∀x∀y (Ixy → Iyx), ∀xAxx, then the first-order re-
sulting theories are shown to be undecidable, using Rabin’s [5] method
in the following way.

Let M = 〈M,R〉 be a model of the predicate calculus with a single
binary relation, whose undecidability we will use. Let A be M to which
new distinct elements ta and rab are added, for each 〈a, b〉 ∈ R.

Define ≺ as being the transitive and reflexive closure of the relation
on A that holds between x and y iff, for some a, b, aRb; and x = a, y =
ta, or x = ta, y = rab, or x = b, y = rab:

�
�

�3

�
�
��

ta •

@
@

@
@

@I
•rab

a b
• •

Let a _ b iff there is a c such that c ≺ a and c ≺ b.
Then A = 〈A,≺,_〉 is a reflexive Aristotelian algebra.
Let D(x) be the formula saying that x is ≺-minimal:

∀y (Ayx→ Axy),

and F (x, y) the formula

∃r∃t (Axt ∧ Atr ∧ ¬Atx ∧ ¬Art ∧ (Axy ∨ Ayr))

Then 〈{x | A |= D(x) }, { 〈x, y〉 | A |= D(x)∧D(y)∧F (x, y) }〉 = M.

The situation is known to be different in the case of the richer theory
with complements and meets, viz., Boolean algebra, which was shown
decidable by Tarski.
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