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1. Introduction

We will characterize the notion of validity with respect to models, for compre-
hension axioms, containing gluts. In order to make this issue clear, let us notice that
the paper lies at the confluence of three rather independent topics that we now briefly
mention.

1) Classical logic demands that a sentence is true iff it is not false, a requirement
which encompasses both the excluded middle and the non-contradiction principle.
Glut logic, on the contrary, only imposes that if a sentence is not true, then it is false,
thus rejecting the non-contradiction principle, while keeping the excluded middle. So
we can be confronted to situations where “not-true” may differ from “false”, and “not-
false” from “true”. More on this topic can be found in [PRI 87].

2) Semantic proofs of cut-elimination for second order and higher order logics
led people to a notion of model —more exactly of Schiitte’s semivaluation—which
is reminiscent of the old three-valued logic (see [GIR 87, chapter 3]). Though these
were presented in a context with gaps, one has the feeling that, on the semantic level,
the removal of cuts becomes an introduction of gluts. It was also observed that a non-
elementary cut-elimination proof is of no use in many interesting cases, because the
cut-elimination can be proved in these cases almost trivially and in a very elementary
way. This phenomenon is known as cut-absorbtion.

3) Following [GIL 74], different proposals were made for the solution of Russell’s
paradox, to the effect that one keeps the full naive comprehension principle in the
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foundations of set theory, but changes the language by duplicating the €-symbol. One
will no longer have r € r iff —r € r, but rather something like r €™ riff r €~ r.
To connect these two relations, one further imposes that there are no gaps —(a €T
bAa €~ b)ornogluts (a €T bV a € b), but not both (see [HIN 94], [LIB 04]).

We will be concerned here with cuts and gluts in systems for set theory, with
abstraction terms. We will not use the two €-symbols that we just mentioned, but
we will rather bring this distinction on the semantic level. We will also not restrict
ourselves to naive set theory, or some other particular system. We will instead define a
semantics and a system of proofs which works for any language with abstracts. So our
results will apply whether the system is consistent or not, or admits cut-elimination or
not, etc.

A language will have exactly one binary relation symbol, denoted &, and a collec-
tion of set abstracts { x | ¢ }, closed under substitution. Thus the equality symbol is
missing'.

We will use individual constants instead of free variables. Formulas equivalent up
to (bound) variables are identified. x, y, z will denote (bound) variables; a, b, ¢, d
will denote individual constants; r, s, £, u will denote terms (constants or abstracts).
We use the notation ¢(t) for highlighting some occurrences of ¢ in . More precisely:
the result of the substitution of ¢ for ¢ in ¢ is supposed to be denoted by . (t); since
the mention of the subscript ¢ will be useless—because clear from the context—in the
situations we will be faced with, we use the notation ¢(t). Thus ¢, which is ¢ (c), is
also denoted ¢(c).

2. Semantics

We introduce the notion of a model allowing gluts and define the truth and false-
hood in such models. The main problem with set abstracts, in the general case, is that
they block the inductive definitions. ¢ € {z | ¢(z) } has not necessary greater com-
plexity than ¢(¢): consider, for example, {z |z €z} e {z |z €z Ax €z} We
will get round this difficulty by defining directly ¢ € s from a predetermined interpre-
tation of the terms, without worrying whether s is an abstract or not, and postulating
independently afterwards a comprehension principle. The terms are interpreted as
functions which assign values to valuations. We think this is better than interpreting
abstracts as n-ary functions, what depends on arbitrary decisions, like an enumeration
of the variables (more on this in [CRA 04b] and [CRA 04a]).

The definitions of this section are taken from [CRA 92]. Let M = (M, et €™)
be a structure such that M is not empty and € U € "= M x M. A valuation is a

1. If the collection of abstracts is empty, we are left with the usual predicate calculus, without
equality. The restriction on a single relation symbol is of course inessential —it simply makes
things shorter to formulate and more readable.
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function from the constants to M. v[a — «] is the valuation identical to v, except that
the value of a is «, i.e., v[a — a](a) = a and v[a — «](b) = v(b), for b # a. The
interpretation of a term ¢ is a function, denoted M (t), defined for the valuations,
such that:

- M(t)(v) is in M;

- M(t)(v) = M(t)(w) if v(a) = w(a), for every constant a occuring in ¢;

— M(a)(v) = v(a), for every constant a;

— M(($)(v) = M(ta)(v]a > M(s)(0)]).

We define inductively M, v =1 x (“x is true in M for v) and M,v =~ x (“x
is false in M for v”) as follows:

- M, v =Tt e siff M(t)(v) et M(s)(v);

-M,v E" t e siff M(t)(v) €= M(s)(v);

~-M,v ET (¢ =) iff Myv E~ por M,v ET s

- Mo E" (¢ =) iff Myv =T pand M, v =~ 4;

- M, v ET (p =) iff Mo =T pand M,v =T 4,

or M,v E~ pand M,v E~ 9
- M, v E" (¢ <= ¢)iff M,v ET pand M,v =" 1,

or M,v =~ ¢ and M,v =1 1;
+

- M,v ET Vo p(x) iff M,v[a — o] ET ¢(a),forall ain M;
- M,v =" Yo p(z) iff M,v[a— o] =~ ¢(a), for some « in M;
~M,v ET 3z p(x) iff M,v]a— o] ET p(a), for some « in M;
-M,v =" Jrp(x) iff M,vja — o] =~ ¢(a), forall ovin M.

Such a structure M, with an interpretation of the terms, is a model if it is com-
prehensive, ie.,if { x | ¢ } is a term of the language, then for every a and v:

aet M({z]|p})(v)iff M,v[a— a] ET (a);
ae” M{z|e})(v)iff M,v[a — o] E~ p(a).
Given a structure, (M, €*, €7), an element of € N €7, if any, is called a glut.

A model is classical iff its underlying structure has no gluts.

The following standard properties hold also for this notion of model. The straight-
forward inductive proofs do not require comprehensiveness.

PROPOSITION 1. — Ifwv(a) = w(a), for every constant in @, then
Mo ET piff Myw ET ¢, and M,v E~ ¢ iff M,w E~ ;
Mofd = ME)0)] =+ (@) i M,v =+ o(d);

M, v[d = ME) ()] E~ piff Mv E (D)

if M,v =TV o, then M, v =T ¢(t);
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if M, v =" @(t), then M,v =~ Yz ¢(z);
if M,v =T ©(t), then M,v =T 3z o(x);
if M,v =" 3z p(x), then M,v =~ o(t).

From comprehensiveness and proposition 1, we derive:

PROPOSITION 2. — M, v =Tt € {z | p(z) } iff M,v ET o(t);
Mo T te{z o) tiff M =T ot).
3. The sequent calculus

A sequent is an ordered pair (I', A) of finite sets of formulas, denoted I' IF A.
I', T/ denotes ' UT”, and {(p} is denoted by .

CUT RULE. —
TlFp, A  T,plFA
T'IFA
LOGICAL RULES. —
T'lkFe A LelkA
T, - - A TIF—p, A
T, IF A TIFo,A TIF,A
— AL AR
L,(eAY)IFA LI (pAy),A
TolFA  T,0lA Tl o, A
\/ -
T,(ove) kA © TIF (V) A
Tho, A  T,0kFA T, 0l b, A
—L - —R
F7(<p—>z/))||—A F|}—((p—>z/J)7A
Tk, 0, A Typ,0IFA Lolky, A Ly lk e, A
T,(p o o) IF A t TIF (p o ), A f
L,o(t) IFA Ik p(a), A
_ vV — VR
I Vxo(x) - A TIFVze(x),A
T, o(a) IF A Tk e(t), A
— 3 —— g
[, 3z p(x) I A [ Ik 3z p(x), A

Usual restrictions for 3y, Vg rules: the “proper” constant a doesn’t appear in
ILA ().
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COMPREHENSION RULES. —

L,o(t) IFA LIk p(t),A

F,te{m\ap(x)}H—A{HL Fll—te{x\ap(x)},A{‘}R

DEFINITIONS. — A prederivation is a finite tree of sequents generated by the rules
from initial sequents. More precisely: a sequent is a prederivation and its own ini-
: : L. .. kA" TVIRAT
.5 ,and _, *  are prederivations and if ———— R is an
I'IFA IIFA N

tial sequent; if

instance of the two-premiss rule R, then T'1FA' II-A" pisa prederivation whose
RN
and similarily for the one-premiss

initial sequents are those o *and .
q fF’H—A’ TIFA”

rules.
I'IF A is an identity sequent iff ' N A is not empty.
Let ¢, d be distinct constants. T' IF A is a cd-sequent iff ¢ € disinT', A.
A derivation is a prederivation whose initial sequents are identity sequents.

If ¢, d are distinct constants, a cd-derivation is a cut-free prederivation, in which
¢, d are not proper constants and the initial sequents are identity or cd-sequents.

A glut-derivation is a cd-derivation—for some c, d—such that the constants c, d
don’t occur in the conclusion.

WEAKENING. — If one adds T to the left and A’ to the right of each sequent in
a prederivation of I' IF A while changing the proper constants to avoid conflicts, if
necessary, then one gets a prederivation of IV, T" IF A, A’. Clearly this weakening
of a prederivation preserves its length and its kind (derivation, cut-free derivation,
cd-derivation).

PROPOSITION 3 (INVERSION). — The rules {|}1 and {|}r are invertible in the
following sense: if Tt € {x | ¢ } I A is cut-free derivable, then T, o(t) IF A is cut-
free derivable; if ' I- ¢t € {x | ¢}, A is cut-free derivable, then T |- p(t), A is cut-
free derivable. This holds also for cd-derivability, glut derivability and derivability.

All the rules, except V1, and 3, are invertible in an analogous sense.
PROOF. — By induction on the length of a [cd-]derivation of T',t € {z | ¢ } IF A.

IfT,t € {x | ¢(x)} IF Ais an identity sequent, but I', o(¢) I+ A is not, then
t € {z|¢(x)} belongsto A,and T, p(¢) IF A is ed-derived as follows:

T, o(t) IF o(t), A
T, o(t) IFA

{I}Ir

IfT, ¢t € {z|p(z)}IF Aisacd-sequent, sois I, p(t) IF A.
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Suppose that the [ed-]derivation of ', € {z | ¢(z) } IF A ends in an inference
introducing t € {z | p(x) }:

™, o(t) IF A
rjte{z|ex)}FA

{3z,

where I'*,t € {z | ¢(z)}isT',t € {z | ¢(z)}. Since we can suppose ¢ € {z |
o(x) }notinT,wehave IT* =T orI™* =T,t € {z | p(z) }.

If ' = T'*, the result is immediate from the premiss. If ', ¢ € {z | ¢(x) } = T'*,
the premiss is T', ¢ € {z | ¢(x) }, ¢(t) IF A, and the conclusion follows by inductive
hypothesis.

If It € {z | p(x)} IF A is the conclusion of an inference not introducing
t € {z | p(x) }, then we use the same rule with premisses provided by the inductive
hypothesis.

The invertibility of the { | } g-rule is proved in a dual way.

Similar proofs work for the other rules; we can also deduce it from the complete-
ness theorem (theorem 4), whose proof uses the invertibility of the {| }-rules only.
]

DEFINITIONS. — A sequent I' I+ A is valid in M with respect to v iff some formula
in I is false in M with respect to v, or some formula in A is true in M with respect
tov.

A sequent is valid in M iff it is valid in M with respect to every valuation.

A sequent is valid, classically valid, or glut valid iff it is valid in all models, all
classical models, or all models with gluts, respectively.

THEOREM 4 (COMPLETENESS). — A sequent is valid, classically valid, or glut valid
iff it is cut-free derivable, derivable, or glut derivable, respectively.

PROOF. — We present the proof for the glut-case only. The two other cases can be
easily obtained by an appropriate modification. In fact the classical case is the usual
completeness theorem and the general case is practically in [CRA 92]. Besides, most
of this proof is an adaptation of similar arguments that can be found in [CRA 92] and
[CRA 94].

1. For the “if” part we will actually establish the following stronger result, as we
will need it in the “only if” part: a cd-derivable sequent is valid relatively to abstract
models with gluts—a model being called “abstract” when comprehension is relaxed
to:

if M,v[a — a] =T (a), thena €* M({z | p})(v).

Let indeed M be such a model, and «, 3 elements of M such that o €+ 3 and
a €~ (. By induction on the length of a cd-derivation—using propositions 1, 2—
every sequent is valid in M with respect to any valuation v such that v(¢) = « and
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v(d) = . Therefore, as ¢, d don’t occur in the conclusion, this conclusion is valid in
M for all valuations .2

2. For the “only if” part, we give a Henkin-style argument.

Suppose that T" I A is not glut derivable. Let ¢, d be such that it is not cd-derivable.
We will show that there is a model with gluts and a valuation that makes I' IF A not
valid.

2.1. We first indicate how to construct a sequence G of sequents I'g IF Ay, I'; I+
Aq, ... such that:

— no sequent in the sequence is cd-derivable; I'g IF Agis I' IF A; I'; € 'y and
AVEGiVIEH

— for each formula of the form ¢ € s,if no I'; I- t € s, A; is cd-derivable, then
t € sisin some Aj;; for each formula of the form Vz ¢ (z),if no I'; IF Vz o (x), A, is
cd-derivable, then there is a term ¢ such that ¢(¢) is in some A ;3 for each formula of
the form 3z ¢ (x), if no I';, Jx ¢ (z) IF A; is cd-derivable, then there is a term ¢ such
that ¢)(t) is in some I';.

Let g, 1, (2,... be an enumeration of the formulas of the language. We show how
to go fromI'; IF A; to T'yq IF Aypq.

If p;ist € sand I'; I- ¢ € s, A, is not cd-derivable, we let I'; 11 IF A; 41 be
Tilkt e s, A If p;is Jxep(x) and Ty, Fx ¢p(x) IF A, is not ed-derivable, let a be a
constant not occuring in one of the formulas of this sequent and distinct from ¢, d. We
letT;1q IF A1 be Ty, 0(a) IF A;. The analogous Vi ) case is symmetric. In all the
other cases we let I'; 1 IF A; 1 be T'; IF A;.

2.2. We derive from this sequence the structure M as follows:

— M is the set of all terms—including the “open?” ones— of the language;

— M(€)™ is the set of ordered pairs of terms (¢, s) such that, for some i, T'; I~
t € s,A\; is cd-derivable; and M (€)™ is the set of ordered pairs of terms (¢, s) such
that, for some ¢, I';,t € s Ik A; is cd-derivable;

- M(t(@))(v) is t(v(a)), for all t(a); all the constants occuring in ¢ being men-
tioned in @.

23.ct U e = M?,because if t €t s,thennoT; It € s, A; is cd-derivable.
Hence ¢t € s belongs to a Aj;. Therefore I';,¢ € s I- A is an identity sequent and
te™ s.

2. We notice that the cut rule retains classical validity, but not validity nor glut validity.
3. So this is not a term model in the sense of [FOR 95].
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— M has at least one glut, as we trivially have ¢ €t d and c €~ d.

2.4. We define G =1  as meaning that, for some i, T; I+ ¢, A; is cd-derivable;
and G =~ ¢ as meaning that, for some i, I';, ¢ |- A; is cd-derivable.

Let id be the identity valuation: v(a) = a, for every constant a. Clearly,

M(t)(id) = t.

‘We now show that;
—if M,id =t ¢, then G =1 o
—if M,id =~ ¢,then G =~ ¢.

The proof is an induction on ¢, starting with the immediate cases of the form ¢ € s;
the “length” of ¢ (¢) being less than the one of Vx 1)(x). We only give some cases.

-If M,id ET (¢ — X), then M,id =~ ¢ or M,id =" x. By inductive
hypothesis, G =" 1 or G =T x. By weakening, T';, 9 IF x, A; is cd-derivable, for
some ¢. Therefore, applying the —p rule, I'; IF (¢p — x), A; is cd-derivable. Hence
GET (¥ —x).

~If M,id == (¢ — x), then M id =1 1 and M,id =~ x. By inductive
hypothesis, G =1 ¢ and G =" x. Hence, by weakening, T'; IF 1, A; and Ty, x IF A;
are cd-derivable, for some i. Thus T';, (¢ — x) IF A; is cd-derivable, by the —, rule.
Whence G =~ (¢ — x).

~If G £ Vx (), then some v(t) is in a A;, which implies, by weakening,
that G =1 +(t). By inductive hypothesis, M, id T (). Therefore M, id T
Vi (z).

—If M,id =~ Vzi(z), then M,idla — t] == (a), for some ¢; hence
M, id == ¢(t), as M(t)(id) = t. By inductive hypothesis, T';,¥(t) I A; is
cd-derivable, for some i. And so is [';,Vz ¢(x) I+ A;, by the V, rule. Therefore
G = Va ().

From this we conclude that no sequent of G is valid in M with respect to id.

2.5. At last, to conclude that I' I- A is not glut valid, it remains to show that M is
comprehensive.

-,

We notice that, starting from the fact that M(t(b))(v) = t(v(b) =
M(t(v(b)))(id), one obtains, by induction, that M,v =% o(b) iff M,id E=*
¥(v(b)), where all the constants occuring in ¢ are indicated. So it will be sufficient to
show that:

—if M,id = o(t),thent €* {x | ¢(x) },ie., M is abstract,
—ift €t {x | p(x)},then M, id =+ ©(t).



Cuts and gluts 257

We limit ourselves to the =" case, the other case being completely symmetric.

2.5.1. Suppose M,id =T o(t). Then, by 2.4.,G =1 ©(t). Hence some T'; I-
©(t), A; is cd-derivable. So, by the {|}g-rule, T'; IF t € {x | o(x)}, A, is also
cd-derivable. Therefore t €t {z | p(z) }.

2.52. Suppose t €t {z | p(z)}. Thensome ['; -t € {x | p(x)},A; is cd-
derivable. By proposition 3, T'; I o(t), A, is also cd-derivable. Since M is abstract,
by 2.5.1., it follows, from the proof of the “if” part, that I'; I~ o(t), A; is valid in M
with respect to id. But, by 2.4., no formula in I'; is false and no formula in A; is true
in M with respect to id. Therefore M, id =1 p(t)* [ ]

The following consequences of the completeness theorem are worth mentioning.
If cut-elimination holds, valid means classically valid. If cut-elimination does not
hold, then some classically valid sequent is not glut valid. Since I' IF A is valid iff it
is glut valid AND classically valid, it follows that I" I- A is cut-free derivable iff it is
glut derivable AND derivable. This observation will be proved directly and refined in
the following theorem and its corollary. An analogous result for second order logic is
already in [GIR 87].

THEOREM 5. — IfT' I+ A is derivable and I'* |- A* is glut derivable, then T',T"* I
A* A is cut-free derivable. In fact, a cut-free derivation of I, T I+ A* A can be
produced in an elementary way from a given derivation of I' I A and a given glut-

derivation of T'* |+ A*.

PROOF. — It might first be useful to motivate the proof by the following paradigmatic
example. From a derivation of " IF A with atomic cuts, we get a cut-free derivation
of I,VaVy (x € y — x € y) IF A: we simply add VaVy (x € y — x € y) to the left
of each sequent and replace each cut

I'IFtes, A T/ teslFA

I’ IF A’
by
I'Ftes, A" T/ teslFA
=L
I (tes—tes)l-A
Vi, Ve

I A
The proof below is the generalisation of the fact that we absorbed the cuts, in this
example, by using the glut-derivation:

Fced cedlF

N
I+

(ced—ced)

Y,V

VaVy (z €y — x € y) IF

4. Gilmore-Kripke’s fixed-point construction could have been used in this paragraph instead of
the inversion of the rules for { | } (see [CRA 92]).
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Choose a derivation of I' I A and use a standard elementary cut-elimination
procedure to reduce the cut-formulas (if any) to formulas of the form ¢ € s. Then add
I'* to the left and A* to the right of each sequent— and modify the proper constants if
necessary.

We can now eliminate the cuts from the modified derivation, with the help of a
glut-derivation of I'™* I A*:

Ii(e,d) IFced,Ai(e,d) --- Tj(e,d),cedl-Ajed)
T* I A

that we will properly attenuate. To this effect we select an uppermost cut

Shktesll Xiteslh
ST

I,T* IF A%, A

and replace it by

X, Tt s) It es,Ai(t,s),IT --- X, T;(t,s),t € sl-Aj(t,s),11

YIFII
LTI A A
thus obtaining a derivation with one less cut. ]
COROLLARY 6. — From a derivation and a glut-derivation of a given sequent one

obtains, in an elementary way, a cut-free derivation of the same sequent.

REMARK. — If the empty sequent I} is derivable, then a sequent is cut-free derivable
iff it is glut derivable. This happens, in particular, if the language contains the term
r:{x | x ¢ z }. Russell’s paradox can indeed be presented as a derivation of I-:

reribrer rerlkFrer
Fré¢rrer rerré¢rl
—{l}r —{l}
Frer rerl-
cut
I
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3.1. Loose derivations

Let us now consider languages containing a set abstract x such that in a model
with gluts every element bears the € and also the €~ relation to the interpretation of
. An empty set abstract like { z | Jz3y (x € y Az ¢ y) } will do°.

DEFINITIONS. — I' IF A is a d-sequent iff some formula of the form t € d belongs
to, A.

A loose derivation is a cut-free derivation in which the initial sequents are identity
sequents or d-sequents, provided these d’s are not proper constants and don’t occur
in the conclusion.

PROPOSITION 7. — If the language contains ®, then a sequent is glut derivable iff it
is loosely derivable.

PROOF. — Clearly every glut-derivation is loose.

Suppose there is a loose derivation of I' I A. We first replace the d’s of the d-
sequents by x and, in the resulting prederivation, the non-identity initial sequents of
the form IVt € = IF A’ and I IF ¢t € =, A’ by the following glut-derivations:

I acblFacbh A IMcedlr A’
I acbad¢blFa © UiFeecdA T FeddA
A A\
I (acbhadb)lFA T'F(cedhegd,A
Ls Jr,3r

M3rdy(zeynzédy)lk A P32y (zeyneédy),A

{I}e {I}r

I teml- A M-t es A
|
From proposition 7 and theorem 4, we obtain the
COROLLARY 8. — Ifthe language contains %, a sequent is glut valid iff it is loosely

derivable.

3.2. Cut absorption

The two next notions come from [GIR 87], chapter 3, where they are introduced
to minimize the importance of Takeuti’s conjecture.

DEFINITIONS. — A formula is cut-absorbing iff it is false in every model with gluts,
with respect to every valuation.

A formula is cut-proof iff it is is true in every model with gluts, with respect to
every valuation.

5. Such an abstract was used in [HIN 87] in the gap-case. A universal set abstract like { z |
VaVy (x € y — x € y) } could have been taken instead. Every empty set won’t work though.
{z|VaVy(z € y Az ¢ y) } is empty in every model but not universal in most of them.
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Thus ¢ is cut-absorbing iff the sequent ¢ I is glut valid, and ¢ is cut-proof iff the
sequent I ¢ is glut valid. Therefore, by theorem 4, ¢ is cut-absorbing iff the sequent
@ IF is glut derivable, and ¢ is cut-proof iff the sequent I ¢ is glut derivable.

Suppose that we can prove that ¢ is cut-absorbing and not cut-free derivable, then,
by corollary 6, the (classical) consistency of ¢ follows in an elementary way. So if
@ is cut-absorbing and if it is known that its consistency is not elementary provable,
then it seems hopeless to rest on a cut-elimination theorem, like the one in [CRA 94],
for showing in an elementary way that ¢ |- is not derivable.

A simple semantic argument, or proposition 3, shows that:

—  is cut-proof iff — is cut-absorbing; ¢ is cut-absorbing iff - is cut-proof.

— ¢ A1) is cut-proof iff ¢ and 1) are cut-proof.

— o V 9 is cut-absorbing iff ¢ and ) are cut-absorbing.

— (p — 1 is cut-absorbing iff ¢ is cut-proof and v is cut-absorbing.

-V ¢(x) is cut-proof iff ¢ (a) is cut-proof; therefore ¢ is cut-proof iff its universal
closures are cut-proof.

— Ja ¢(x) is cut-absorbing iff p(a) is cut-absorbing; therefore ¢ is cut-absorbing
iff its existential closures are cut-absorbing.

EXAMPLES. — Jrdyzx € y, Jadyx ¢ y, JxTyIz(x € y Ay ¢ z) are cut-proof;
and VaVyx € y,VaVyx ¢ y,VaVyVz (x € y — y € 2) are cut-absorbing.

~VaVy (z € y — x € y) and xTJy (x € y A = ¢ y) are both cut-absorbing and
cut-proof.

—JdaVyy € x, JaVy(y € © Ay ¢ x) are cut-absorbing and cut-proof if the
language contains x, but not in general.

—“€ is reflexive”, viz Vx x € x and “€ is transitive”, viz VaVyVz (r € y Ay €
z — x € z) are not generally cut-absorbing, but they are so if the language contains
®; “€ is reflexive and transitive” is always cut-absorbing.

— The following “axiom of infinity” is cut-proof if the language contains x:
(D exAVz(z €x— Suce(z) € ) Ayy ¢ x),

where () is any “emptyset” abstract and Succ(z) is any term—intuitively standing for
the “successor” of z. To see it quickly, just take x as a witness for x.

d

3.3. Extensionality

Let a C b abbreviate Vo (a €  — b € x) and a ~ b be short for Vo (z € a «
x € b). Ext is the sentence VaVy (z ~ y — = C y).
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As VaVy (x ~ y < y ~ x) is a logical truth, Ext is equivalent to VaVy (x ~
y — Vz(x € z < y € 2)). Thus Ext stands generally for the extensionality axiom
in interesting languages, since Vz (a € z <> b € z) generally represents the relation
of equality or indiscernibility®. Note that a C b is cut-absorbing when the language
contains x, and that Ext is cut-absorbing in any case.

It is easy to see that if, for every M and v, M, v =" 1 entails M,v E~ ¢, and
1) is cut-absorbing, then ¢ is cut-absorbing as well.

But we don’t have in general that if, for every M and v, M,v T 4 entails
M,v =~ ¢, and 7 is cut-absorbing, then ¢ is cut-absorbing’. However, our last
proposition shows that this works when v is Ext.

PROPOSITION 9. — If a sequent ¢ |- EXt is cut-free derivable, then ¢ is cut-
absorbing.
PROOF. — By invertibility of the rules Vi and — i (proposition 3), we can suppose

that a cut-free derivation of ¢ |- Ext ends in something of the form:

pa~bacdlFbed
p,a~bl-(aed—bed)
p,a~blFaChbh

—

R

plF(a~b—acCb) &
R

@ IF Ext

where the a, b, d are distinct proper constants.

If we remove from the prederivation above ¢, a ~ b,a € d |- b € d the formulas
a € d and b € d that are not ancestors of p—remember that the sequents are pairs of
sets, not of sequences or of multisets! —, we remain with a prederivation, ending in
@,a ~ bl in which a, b, d do no longer act as proper constants. Let’s replace a and
b everywhere by a fresh constant c. The result is a cd-derivation of ¢, ¢ ~ ¢ IF-.

We will conclude that ¢ I is glut derivable from the following three very simple
cases of cut-elimination.

(HDIfTIFsec,Aand T, s € clF A are cd-derivable, then I" IF A is cd-derivable.

This we prove by induction on the length of a cd-derivation of I', s € ¢ IF A.

6. See [CRA 05]. See also [HIN 94] for a discussion of various notions of extensionality in
glut logic.

7. Here are some counter-examples. If ¢ is cut-absorbing and I ¢ cut-free derivable, ¢ |- ¢
is cut-free derivable, for any v, cut-absorbing or not; 1 IF ¢ — (¢ A ) is cut-free derivable
and ¢ — (p A 1) is cut-absorbing if  is both cut-free and cut-absorbing. The same holds for
Vzy(x) IF Jzp(z) — Tz (p(z) A p(z)), if 3z p(z) is cut-absorbing and ¢(t) is cut-proof
for some ¢.
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Suppose I', s € ¢ IF A is an identity or a cd-sequent, but I' IF A is not. Then s € ¢
isin A and I' IF A is derivable, by hypothesis. The rest is straightforward, as s € ¢
can never be introduced by a rule.

(Q)IfT, (s € c < s € ¢) IF Ais ed-derivable, then T IF A is ed-derivable.

This is again proved by induction on the length of a cd-derivation. Suppose I, (s €
¢ < s € ¢) IF Ais an identity or a cd-sequent, but " I- A is not. Then (s € ¢ <> s €
c¢)isin A,and T IF A is cd-derivable:

I''seclksec, A I''seclksec, A

T'iFA

R

Suppose (s € ¢ < s € ¢) is introduced by a < -rule:

I'iFsecA I';seclkA
I'*,(sece—sec)lFA

L

where I'*, (s € c = s € ¢)isT', (s € ¢ < s € ¢). We can suppose that (s € ¢ <> s €
c¢)isnotin I'. If I is T, then the result follows from (1). f I is T', (s € ¢ < s € ¢),
then, applying the inductive hypothesis, we get cd-derivations of I I+ s € ¢, A and of
I',s € clF A, from which we get a cd-derivation of " IF A, by (1).

In a very similar way, we prove by induction, with the help of (2), that
(B)IfI',c ~ ¢l A is cd-derivable, then so is " IF A.
Therefore ¢ is cut-absorbing, by theorem 4. ]

Assuming that compactness can be established by generalizing the proof of theo-
rem 4, we remark that proposition 9 shows the extreme fragility of Ext in the sense
that if Ext is true in a non-classical model M, then there exists another model in
which Ext is NOT TRUE, while the non-false and non-true sentences in M remain
unchanged.
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